-
Notifications
You must be signed in to change notification settings - Fork 0
/
eval.py
45 lines (39 loc) · 1.48 KB
/
eval.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
import torch
import torch.nn.functional as F
from tqdm import tqdm
from dice_loss import dice_coeff,SegmentationMetric
def eval_net(net, loader, device):
"""Evaluation without the densecrf with the dice coefficient"""
net.eval()
mask_type = torch.float32 if net.n_classes == 1 else torch.long
n_val = len(loader) # the number of batch
tot = 0
PA = 0
CPA = 0
MPA = 0
mIoU = 0
metric = SegmentationMetric(2)
with tqdm(total=n_val, desc='Validation round', unit='batch', leave=False) as pbar:
for batch in loader:
imgs, true_masks = batch['image'], batch['mask']
imgs = imgs.to(device=device, dtype=torch.float32)
true_masks = true_masks.to(device=device, dtype=mask_type)
with torch.no_grad():
mask_pred = net(imgs)
if net.n_classes > 1:
tot += F.cross_entropy(mask_pred, true_masks).item()
else:
pred = torch.sigmoid(mask_pred)
pred = (pred > 0.5).float()
metric.addBatch(pred.cpu(), true_masks.cpu())
PA = metric.pixelAccuracy()
CPA = metric.classPixelAccuracy()
MPA = metric.meanPixelAccuracy()
mIoU = metric.meanIntersectionOverUnion()
print('PA:', PA)
print('CPA:',CPA)
print('MPA:',MPA)
print('mIoU:',mIoU)
pbar.update()
net.train()
return tot / n_val