-
Notifications
You must be signed in to change notification settings - Fork 3
/
Copy pathNearestHit.py
119 lines (84 loc) · 3.05 KB
/
NearestHit.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
__author__ = 'mikhail91'
import numpy
coleventX = 4
class NearestHit(object):
def __init__(self, min_cos_value=0.9):
"""
Track Pattern Recognition based on the connections between two nearest hits from two nearest detector layers.
Parameters
----------
min_cos_value : float
Minimum cos value between two nearest segments of the track.
"""
self.min_cos_value = min_cos_value
def fit(self, X, y):
pass
def predict_one_event(self, X):
"""
Track Pattern Recognition for one event.
Parameters
----------
X : ndarray-like
Hit features.
Returns
-------
labels : array-like
Recognized track labels.
"""
x, y, layers = X[:, 2], X[:, 3], X[:, 0]
used = numpy.zeros(len(x))
labels = -1. * numpy.ones(len(x))
track_id = 0
# Start from a hit in the first layer
for first_id in numpy.arange(0, len(x))[layers == 0]:
track = []
track += [first_id]
used[first_id] = 1
# Go through other detector layers
for one_layer in numpy.unique(layers)[1:]:
# Select hits of the layer
hit_ids = numpy.arange(0, len(x))[(layers == one_layer)*(used == 0)]
# Compute distance between hits
diff_r = (x[track[-1]] - x[hit_ids])**2 + (y[track[-1]] - y[hit_ids])**2
if len(diff_r) == 0:
break
# Select new track hit
track_hit_id = hit_ids[diff_r == diff_r.min()][0]
# Check cos of angle between two track segments
if one_layer != 1:
x1, x2, x3 = x[track[-2]], x[track[-1]], x[track_hit_id]
y1, y2, y3 = y[track[-2]], y[track[-1]], y[track_hit_id]
dx1, dx2 = x2 - x1, x3 - x2
dy1, dy2 = y2 - y1, y3 - y2
cos = (dx1*dx2 + dy1*dy2) / numpy.sqrt((dx1**2 + dy1**2) * (dx2**2 + dy2**2))
if cos < self.min_cos_value:
break
# Add new hit to the track
track += [track_hit_id]
used[track_hit_id] = 1
# Label the track hits
labels[track] = track_id
track_id += 1
return labels
def predict(self, X):
"""
Track Pattern Recognition for all event.
Parameters
----------
X : ndarray-like
Hit features.
Returns
-------
labels : array-like
Recognized track labels.
"""
event_ids = numpy.unique(X[:, coleventX])
y = numpy.zeros((len(X),2))
labels = []
for one_event_id in event_ids:
X_event = X[X[:, coleventX] == one_event_id]
labels_event = self.predict_one_event(X_event)
labels += list(labels_event)
y[:,0] = labels
y[:,1] = X[:, coleventX]
return y