-
Notifications
You must be signed in to change notification settings - Fork 33
/
Copy pathrun_train.py
185 lines (154 loc) · 7.34 KB
/
run_train.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
from constants import DEFORMATOR_TYPE_DICT, DEFORMATOR_TARGET_DICT
from constants import SHIFT_DISTRIDUTION_DICT, WEIGHTS
from loading import load_generator
from latent_deformator import LatentDeformator
from weight_deformator import WeightDeformatorFixedBasis
from weight_deformator import WeightDeformatorSVDBasis
from latent_shift_predictor import LatentShiftPredictor, LeNetShiftPredictor
from trainer import Trainer, Params
from visualization import inspect_all_directions
from utils import make_noise, save_command_run_params
from videos import make_video
from tqdm.auto import trange
import os
import sys
import argparse
import random
import torch
import matplotlib
matplotlib.use("Agg")
def generate_videos(args, generator, deformator):
clips_dir = os.path.join(args.out, 'videos_rectification')
if not os.path.isdir(clips_dir):
os.mkdir(clips_dir)
if args.samples_for_videos is None:
dim_z = generator.dim_z
zs = torch.randn((4, dim_z)).cuda()
else:
zs = torch.load(args.samples_for_videos).cuda()
print('Making videos...')
for i in trange(args.directions_count):
def wd_deformate_arguments_builder(shift_):
directions = torch.LongTensor([i] * len(zs)).cuda()
shifts = torch.FloatTensor([shift_] * len(zs)).cuda()
return directions, shifts
for amplitude in [args.shift_scale, 1.5*args.shift_scale, 2*args.shift_scale]:
clip_path = os.path.join(clips_dir, f'direction{i}_amplitude{amplitude}')
make_video(
generator=generator,
zs=zs,
wd=deformator,
file_dest=clip_path,
shift_from=-amplitude,
shift_to=amplitude,
step=amplitude / 50.,
interpolate=args.video_interpolate,
wd_deformate_arguments_builder=wd_deformate_arguments_builder
)
def main():
parser = argparse.ArgumentParser(description='Latent space rectification')
for key, val in Params().__dict__.items():
target_type = type(val) if val is not None else int
parser.add_argument('--{}'.format(key), type=target_type, default=None)
parser.add_argument('--out', type=str, required=True, help='results directory')
parser.add_argument('--gan_type', type=str, choices=WEIGHTS.keys(), help='generator model type')
parser.add_argument('--gan_weights', type=str, default=None, help='path to generator weights')
parser.add_argument('--resolution', type=int, required=True)
parser.add_argument('--target_class', nargs='+', type=int, default=[239],
help='classes to use for conditional GANs')
parser.add_argument('--deformator', type=str, default='ortho',
choices=DEFORMATOR_TYPE_DICT.keys(), help='deformator type')
parser.add_argument('--deformator_random_init', type=bool, default=True)
parser.add_argument('--deformator_target', type=str, default='latent',
choices=DEFORMATOR_TARGET_DICT.keys())
parser.add_argument('--deformator_conv_layer_index', type=int, default=3)
parser.add_argument('--basis_vectors_path', type=str)
parser.add_argument('--shift_predictor_size', type=int, help='reconstructor resolution')
parser.add_argument('--shift_predictor', type=str,
choices=['ResNet', 'LeNet'], default='ResNet', help='reconstructor type')
parser.add_argument('--shift_distribution_key', type=str,
choices=SHIFT_DISTRIDUTION_DICT.keys())
parser.add_argument('--make_videos', type=bool, default=True)
parser.add_argument('--samples_for_videos', type=str, default=None)
parser.add_argument('--video_interpolate', type=int, default=None)
parser.add_argument('--seed', type=int, default=2)
parser.add_argument('--device', type=int, default=0)
parser.add_argument('--multi_gpu', type=bool, default=False,
help='Run generator in parallel. Be aware of old pytorch versions:\
https://github.com/pytorch/pytorch/issues/17345')
# model-specific
parser.add_argument('--w_shift', type=bool, default=True,
help='latent directions search in w-space for StyleGAN')
args = parser.parse_args()
torch.cuda.set_device(args.device)
random.seed(args.seed)
torch.random.manual_seed(args.seed)
save_command_run_params(args)
# init models
if args.gan_weights is not None:
weights_path = args.gan_weights
else:
weights_path = WEIGHTS[args.gan_type]
G = load_generator(args.__dict__, weights_path, args.w_shift)
if args.deformator_target == 'latent':
deformator = LatentDeformator(
shift_dim=G.dim_shift,
input_dim=args.directions_count,
out_dim=args.max_latent_dim,
type=DEFORMATOR_TYPE_DICT[args.deformator],
random_init=args.deformator_random_init
).cuda()
elif args.deformator_target == 'weight_svd':
deformator = WeightDeformatorSVDBasis(
generator=G,
conv_layer_ix=args.deformator_conv_layer_index,
directions_count=args.directions_count
).cuda()
G = G.cuda()
dim_shift = args.directions_count
elif args.deformator_target == 'weight_fixedbasis':
assert args.basis_vectors_path is not None
deformator = WeightDeformatorFixedBasis(
generator=G,
conv_layer_ix=args.deformator_conv_layer_index,
directions_count=args.directions_count,
basis_vectors_path=args.basis_vectors_path
).cuda()
G = G.cuda()
dim_shift = args.directions_count
else:
raise ValueError("Unknown deformator_target")
if args.shift_predictor == 'ResNet':
shift_predictor = LatentShiftPredictor(
dim_shift, args.shift_predictor_size).cuda()
elif args.shift_predictor == 'LeNet':
shift_predictor = LeNetShiftPredictor(
dim_shift, 1 if args.gan_type == 'SN_MNIST' else 3).cuda()
# training
args.shift_distribution = SHIFT_DISTRIDUTION_DICT[args.shift_distribution_key]
params = Params(**args.__dict__)
# update dims with respect to the deformator if some of params are None
if args.deformator_target == 'latent':
params.directions_count = int(deformator.input_dim)
params.max_latent_dim = int(deformator.out_dim)
trainer = Trainer(params, out_dir=args.out)
trainer.train(G, deformator, shift_predictor, multi_gpu=args.multi_gpu)
if args.make_videos:
if 'weight_' not in args.deformator_target:
sys.stderr.write("Making video is available only for weight deformations.\n")
else:
generate_videos(args, G, deformator)
if args.deformator_target == 'latent':
save_results_charts(G, deformator, params, trainer.log_dir)
def save_results_charts(G, deformator, params, out_dir):
deformator.eval()
G.eval()
z = make_noise(3, G.dim_z, params.truncation).cuda()
inspect_all_directions(
G, deformator, os.path.join(out_dir, 'charts_s{}'.format(int(params.shift_scale))),
zs=z, shifts_r=params.shift_scale)
inspect_all_directions(
G, deformator, os.path.join(out_dir, 'charts_s{}'.format(int(3 * params.shift_scale))),
zs=z, shifts_r=3 * params.shift_scale)
if __name__ == '__main__':
main()