Skip to content

Latest commit

 

History

History
180 lines (168 loc) · 6.69 KB

README.md

File metadata and controls

180 lines (168 loc) · 6.69 KB

VW-Swin/ConvNeXt

Installation

conda create -n vw python=3.8
conda install pytorch=1.13.1 torchvision=0.14.1 pytorch-cuda=11.3 -c pytorch -c nvidia
pip install mmcv==1.7.1
pip install -v -e .

Train

More Utilization: See MMSegmentation Docs.

Swin Transformer

tools/dist_train.sh configs/swin/CONFIG.py NUM_GPUS --work-dir work_dirs/EXP_NAME

ConvNeXt

tools/dist_train.sh configs/convnext/CONFIG.py NUM_GPUS --work-dir work_dirs/EXP_NAME

Evaluation

Single GPU

python tools/test.py path/to/config.py path/to/weights.pth --eval mIoU

Multiple GPUs

tools/dist_test.sh path/to/config.py path/to/weights.pth NUM_GPUS --eval mIoU

Model

ADE20K

Name Backbone crop
size
lr
sched
mIoU mIoU
(ms+flip)
download
VW Swin-B 640x640 160k 52.5 53.5 model
VW Swin-L 640x640 160k 54.4 55.8 model
VW ConvNeXt-T 512x512 160k 47.3 48.3 model
VW ConvNeXt-S 512x512 160k 48.8 49.9 model
VW ConvNeXt-B 640x640 160k 53.3 54.1 model
VW ConvNeXt-L 640x640 160k 54.3 55.1 model
VW ConvNeXt-XL 640x640 160k 54.6 55.3 model

Cityscapes

Name Backbone crop
size
lr
sched
mIoU mIoU
(ms+flip)
download
VW ConvNeXt-T 512x1024 160k 81.3 82.1 model
VW ConvNeXt-S 512x1024 160k 82.2 83.1 model
VW ConvNeXt-B 512x1024 160k 83.2 83.9 model
VW ConvNeXt-L 512x1024 160k 83.4 84.1 model
VW ConvNeXt-XL 512x1024 160k 83.6 84.3 model

Citing VW-Swin/ConvNeXt

@inproceedings{yan2023multi,
  title={Multi-Scale Representations by Varing Window Attention for Semantic Segmentation},
  author={Yan, Haotian and Wu, Ming and Zhang, Chuang},
  booktitle={The Twelfth International Conference on Learning Representations},
  year={2023}
}