-
Notifications
You must be signed in to change notification settings - Fork 24
/
Copy pathtrain.py
236 lines (187 loc) · 7.63 KB
/
train.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
import os
import sys
import math
import time
import shutil
import pickle
from lockfile import LockFile
import torch
import torch.nn as nn
import torch.nn.parallel
import torch.backends.cudnn as cudnn
import numpy as np
import data
from vocab import Vocabulary
from model import PVSE
from loss import PVSELoss
from eval import i2t, t2i, encode_data
from logger import AverageMeter
from option import parser, verify_input_args
import logging
logging.basicConfig(format='%(asctime)s %(levelname)s %(message)s',
datefmt="%Y-%m-%d %H:%M:%S", level=logging.INFO)
def lock_and_write_to_file(filename, text):
with LockFile(filename) as lock:
with open(filename, 'a') as fid:
fid.write('{}\n'.format(text))
def copy_input_args_from_ckpt(args, ckpt_args):
args_to_copy = ['word_dim','crop_size','cnn_type','embed_size', 'num_embeds',
'img_attention','txt_attention','max_video_length']
for arg in args_to_copy:
val1, val2 = getattr(args, arg), getattr(ckpt_args, arg)
if val1 != val2:
logging.warning('Updating argument from checkpoint [{}]: [{}] --> [{}]'.format(arg, val1, val2))
setattr(args, arg, val2)
return args
def save_ckpt(state, is_best, filename='ckpt.pth.tar', prefix=''):
torch.save(state, prefix + filename)
if is_best:
shutil.copyfile(prefix + filename, prefix + 'model_best.pth.tar')
logging.info('Updating the best model checkpoint: {}'.format(prefix + 'model_best.pth.tar'))
def get_description(args, epoch=-1):
return ('[{}][epoch:{}] {}'.format(args.logger_name.split('/')[-1], epoch, args))
def train(epoch, data_loader, model, criterion, optimizer, args):
# switch to train mode
model.train()
# average meters to record the training statistics
losses = AverageMeter()
losses_dict = dict()
losses_dict['ranking_loss'] = AverageMeter()
if args.div_weight > 0:
losses_dict['div_loss'] = AverageMeter()
if args.mmd_weight > 0:
losses_dict['mmd_loss'] = AverageMeter()
for itr, data in enumerate(data_loader):
img, txt, txt_len, _ = data
if torch.cuda.is_available():
img, txt, txt_len = img.cuda(), txt.cuda(), txt_len.cuda()
# Forward pass and compute loss; _a: attention map, _r: residuals
img_emb, txt_emb, img_a, txt_a, img_r, txt_r = model.forward(img, txt, txt_len)
# Compute loss and update statstics
loss, loss_dict = criterion(img_emb, txt_emb, img_r, txt_r)
losses.update(loss.item())
for key, val in loss_dict.items():
losses_dict[key].update(val.item())
# Backprop
optimizer.zero_grad()
loss.backward()
if args.grad_clip > 0:
nn.utils.clip_grad.clip_grad_norm_(model.parameters(), args.grad_clip)
optimizer.step()
# Print log info
if itr > 0 and (itr % args.log_step == 0 or itr + 1 == len(data_loader)):
log_msg = 'loss: %.4f (%.4f)' %(losses.val, losses.avg)
for key, val in losses_dict.items():
log_msg += ', %s: %.4f, (%.4f)' %(key.replace('_loss',''), val.val, val.avg)
n = int(math.ceil(math.log(len(data_loader) + 1, 10)))
logging.info('[%d][%*d/%d] %s' %(epoch, n, itr, len(data_loader), log_msg))
log_msg = 'loss: %.4f' %(losses.avg)
for key, val in losses_dict.items():
log_msg += ', %s: %.4f' %(key.replace('_loss',''), val.avg)
exp_name = args.logger_name.split('/')[-1]
lock_and_write_to_file(args.log_file, '[%s][%d] %s' %(exp_name, epoch, log_msg))
del img_emb, txt_emb, img_a, txt_a, img_r, txt_r, loss
return losses.avg
def validate(data_loader, model, args, epoch=-1, best_score=None):
# switch to eval mode
model.eval()
nreps = 5 if 'coco' in args.data_name else 1
order = args.order if hasattr(args, 'order') and args.order else False
img_embs, txt_embs = encode_data(model, data_loader, args.eval_on_gpu)
(r1, r5, r10, medr, meanr), (ranks, top1) = i2t(img_embs, txt_embs,
nreps=nreps, return_ranks=True, order=order, use_gpu=args.eval_on_gpu)
(r1i, r5i, r10i, medri, meanri), (ranksi, top1i) = t2i(img_embs, txt_embs,
nreps=nreps, return_ranks=True, order=order, use_gpu=args.eval_on_gpu)
# sum of recalls to be used for early stopping
rsum = r1 + r5 + r10 + r1i + r5i + r10i
med_rsum, mean_rsum = medr + medri, meanr + meanri
# log
exp_name = args.logger_name.split('/')[-1]
vname = 'Video' if args.max_video_length>1 else 'Image'
log_str1 = "[%s][%d] %s to text: %.2f, %.2f, %.2f, %.2f, %.2f" \
%(exp_name, epoch, vname, r1, r5, r10, medr, meanr)
log_str2 = "[%s][%d] Text to %s: %.2f, %.2f, %.2f, %.2f, %.2f" \
%(exp_name, epoch, vname, r1i, r5i, r10i, medri, meanri)
log_str3 = '[%s][%d] rsum: %.2f, med_rsum: %.2f, mean_rsum: %.2f' \
%(exp_name, epoch, rsum, med_rsum, mean_rsum)
if best_score:
log_str3 += ' (best %s: %.2f)' %(args.val_metric, best_score)
logging.info(log_str1)
logging.info(log_str2)
logging.info(log_str3)
dscr = get_description(args, epoch)
log_msg = '{}\n{}\n{}'.format(log_str1, log_str2, log_str3)
lock_and_write_to_file(args.log_file, log_msg)
if args.val_metric == 'rsum':
return rsum
elif args.val_metric == 'med_rsum':
return med_rsum
else:
return mean_rsum
def update_best_score(new_score, old_score, is_higher_better):
if not old_score:
score, updated = new_score, True
else:
if is_higher_better:
score = max(new_score, old_score)
updated = new_score > old_score
else:
score = min(new_score, old_score)
updated = new_score < old_score
return score, updated
def main():
multi_gpu = torch.cuda.device_count() > 1
args = verify_input_args(parser.parse_args())
if args.ckpt:
ckpt = torch.load(args.ckpt)
args = copy_input_args_from_ckpt(args, ckpt['args'])
print(args)
# Load Vocabulary Wrapper
vocab_path = os.path.join(args.vocab_path, '%s_vocab.pkl' % args.data_name)
vocab = pickle.load(open(vocab_path, 'rb'))
# Dataloaders
trn_loader, val_loader = data.get_loaders(args, vocab)
val_loader = data.get_test_loader(args, vocab)
# Construct the model
model = PVSE(vocab.word2idx, args)
if torch.cuda.is_available():
model = nn.DataParallel(model).cuda() if multi_gpu else model.cuda()
cudnn.benchmark = True
# optionally resume from a ckpt
if args.ckpt:
target_vocab_path = './vocab/%s_vocab.pkl' % args.data_name
src_vocab_path = './vocab/%s_vocab.pkl' % ckpt['args'].data_name
if target_vocab_path != src_vocab_path:
print('Vocab mismatch!')
sys.exit(-1)
model.load_state_dict(ckpt['model'])
#validate(val_loader, model, args)
# Loss and optimizer
criterion = PVSELoss(args)
optimizer = torch.optim.Adam(model.parameters(), lr=args.lr,
weight_decay=args.weight_decay, amsgrad=True)
lr_scheduler = torch.optim.lr_scheduler.ReduceLROnPlateau(
optimizer, factor=0.5, min_lr=1e-10, verbose=True)
# Train the Model
if args.ckpt and 'best_score' in ckpt and ckpt['args'].val_metric == args.val_metric:
best_score = ckpt['best_score']
else:
best_score = None
for epoch in range(args.num_epochs):
# train for one epoch
loss = train(epoch, trn_loader, model, criterion, optimizer, args)
# evaluate on validation set
val_score = validate(val_loader, model, args, epoch, best_score)
# adjust learning rate if rsum stagnates
lr_scheduler.step(val_score)
# remember best rsum and save ckpt
best_score, updated = update_best_score(val_score, best_score,
args.val_metric=='rsum')
save_ckpt({
'args': args,
'epoch': epoch,
'best_score': best_score,
'model': model.state_dict(),
}, updated, prefix=args.logger_name + '/')
if __name__ == '__main__':
main()