forked from cienciadedatos/r4ds
-
Notifications
You must be signed in to change notification settings - Fork 1
/
communicate-plots.Rmd
594 lines (434 loc) · 29.1 KB
/
communicate-plots.Rmd
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
# Graphics for communication
## Introduction
In [exploratory data analysis], you learned how to use plots as tools for _exploration_. When you make exploratory plots, you know---even before looking---which variables the plot will display. You made each plot for a purpose, could quickly look at it, and then move on to the next plot. In the course of most analyses, you'll produce tens or hundreds of plots, most of which are immediately thrown away.
Now that you understand your data, you need to _communicate_ your understanding to others. Your audience will likely not share your background knowledge and will not be deeply invested in the data. To help others quickly build up a good mental model of the data, you will need to invest considerable effort in making your plots as self-explanatory as possible. In this chapter, you'll learn some of the tools that ggplot2 provides to do so.
This chapter focuses on the tools you need to create good graphics. I assume that you know what you want, and just need to know how to do it. For that reason, I highly recommend pairing this chapter with a good general visualisation book. I particularly like [_The Truthful Art_](https://amzn.com/0321934075), by Albert Cairo. It doesn't teach the mechanics of creating visualisations, but instead focuses on what you need to think about in order to create effective graphics.
### Prerequisites
In this chapter, we'll focus once again on ggplot2. We'll also use a little dplyr for data manipulation, and a few ggplot2 extension packages, including __ggrepel__ and __viridis__. Rather than loading those extensions here, we'll refer to their functions explicitly, using the `::` notation. This will help make it clear which functions are built into ggplot2, and which come from other packages. Don't forget you'll need to install those packages with `install.packages()` if you don't already have them.
```{r, message = FALSE}
library(tidyverse)
```
## Label
The easiest place to start when turning an exploratory graphic into an expository graphic is with good labels. You add labels with the `labs()` function. This example adds a plot title:
```{r, message = FALSE}
ggplot(mpg, aes(displ, hwy)) +
geom_point(aes(color = class)) +
geom_smooth(se = FALSE) +
labs(title = "Fuel efficiency generally decreases with engine size")
```
The purpose of a plot title is to summarise the main finding. Avoid titles that just describe what the plot is, e.g. "A scatterplot of engine displacement vs. fuel economy".
If you need to add more text, there are two other useful labels that you can use in ggplot2 2.2.0 and above (which should be available by the time you're reading this book):
* `subtitle` adds additional detail in a smaller font beneath the title.
* `caption` adds text at the bottom right of the plot, often used to describe
the source of the data.
```{r, message = FALSE}
ggplot(mpg, aes(displ, hwy)) +
geom_point(aes(color = class)) +
geom_smooth(se = FALSE) +
labs(
title = "Fuel efficiency generally decreases with engine size",
subtitle = "Two seaters (sports cars) are an exception because of their light weight",
caption = "Data from fueleconomy.gov"
)
```
You can also use `labs()` to replace the axis and legend titles. It's usually a good idea to replace short variable names with more detailed descriptions, and to include the units.
```{r, message = FALSE}
ggplot(mpg, aes(displ, hwy)) +
geom_point(aes(colour = class)) +
geom_smooth(se = FALSE) +
labs(
x = "Engine displacement (L)",
y = "Highway fuel economy (mpg)",
colour = "Car type"
)
```
It's possible to use mathematical equations instead of text strings. Just switch `""` out for `quote()` and read about the available options in `?plotmath`:
```{r, fig.asp = 1, out.width = "50%", fig.width = 3}
df <- tibble(
x = runif(10),
y = runif(10)
)
ggplot(df, aes(x, y)) +
geom_point() +
labs(
x = quote(sum(x[i] ^ 2, i == 1, n)),
y = quote(alpha + beta + frac(delta, theta))
)
```
### Exercises
1. Create one plot on the fuel economy data with customised `title`,
`subtitle`, `caption`, `x`, `y`, and `colour` labels.
1. The `geom_smooth()` is somewhat misleading because the `hwy` for
large engines is skewed upwards due to the inclusion of lightweight
sports cars with big engines. Use your modelling tools to fit and display
a better model.
1. Take an exploratory graphic that you've created in the last month, and add
informative titles to make it easier for others to understand.
## Annotations
In addition to labelling major components of your plot, it's often useful to label individual observations or groups of observations. The first tool you have at your disposal is `geom_text()`. `geom_text()` is similar to `geom_point()`, but it has an additional aesthetic: `label`. This makes it possible to add textual labels to your plots.
There are two possible sources of labels. First, you might have a tibble that provides labels. The plot below isn't terribly useful, but it illustrates a useful approach: pull out the most efficient car in each class with dplyr, and then label it on the plot:
```{r}
best_in_class <- mpg %>%
group_by(class) %>%
filter(row_number(desc(hwy)) == 1)
ggplot(mpg, aes(displ, hwy)) +
geom_point(aes(colour = class)) +
geom_text(aes(label = model), data = best_in_class)
```
This is hard to read because the labels overlap with each other, and with the points. We can make things a little better by switching to `geom_label()` which draws a rectangle behind the text. We also use the `nudge_y` parameter to move the labels slightly above the corresponding points:
```{r}
ggplot(mpg, aes(displ, hwy)) +
geom_point(aes(colour = class)) +
geom_label(aes(label = model), data = best_in_class, nudge_y = 2, alpha = 0.5)
```
That helps a bit, but if you look closely in the top-left hand corner, you'll notice that there are two labels practically on top of each other. This happens because the highway mileage and displacement for the best cars in the compact and subcompact categories are exactly the same. There's no way that we can fix these by applying the same transformation for every label. Instead, we can use the __ggrepel__ package by Kamil Slowikowski. This useful package will automatically adjust labels so that they don't overlap:
```{r}
ggplot(mpg, aes(displ, hwy)) +
geom_point(aes(colour = class)) +
geom_point(size = 3, shape = 1, data = best_in_class) +
ggrepel::geom_label_repel(aes(label = model), data = best_in_class)
```
Note another handy technique used here: I added a second layer of large, hollow points to highlight the points that I've labelled.
You can sometimes use the same idea to replace the legend with labels placed directly on the plot. It's not wonderful for this plot, but it isn't too bad. (`theme(legend.position = "none"`) turns the legend off --- we'll talk about it more shortly.)
```{r}
class_avg <- mpg %>%
group_by(class) %>%
summarise(
displ = median(displ),
hwy = median(hwy)
)
ggplot(mpg, aes(displ, hwy, colour = class)) +
ggrepel::geom_label_repel(aes(label = class),
data = class_avg,
size = 6,
label.size = 0,
segment.color = NA
) +
geom_point() +
theme(legend.position = "none")
```
Alternatively, you might just want to add a single label to the plot, but you'll still need to create a data frame. Often, you want the label in the corner of the plot, so it's convenient to create a new data frame using `summarise()` to compute the maximum values of x and y.
```{r}
label <- mpg %>%
summarise(
displ = max(displ),
hwy = max(hwy),
label = "Increasing engine size is \nrelated to decreasing fuel economy."
)
ggplot(mpg, aes(displ, hwy)) +
geom_point() +
geom_text(aes(label = label), data = label, vjust = "top", hjust = "right")
```
If you want to place the text exactly on the borders of the plot, you can use `+Inf` and `-Inf`. Since we're no longer computing the positions from `mpg`, we can use `tibble()` to create the data frame:
```{r}
label <- tibble(
displ = Inf,
hwy = Inf,
label = "Increasing engine size is \nrelated to decreasing fuel economy."
)
ggplot(mpg, aes(displ, hwy)) +
geom_point() +
geom_text(aes(label = label), data = label, vjust = "top", hjust = "right")
```
In these examples, I manually broke the label up into lines using `"\n"`. Another approach is to use `stringr::str_wrap()` to automatically add line breaks, given the number of characters you want per line:
```{r}
"Increasing engine size is related to decreasing fuel economy." %>%
stringr::str_wrap(width = 40) %>%
writeLines()
```
Note the use of `hjust` and `vjust` to control the alignment of the label. Figure \@ref(fig:just) shows all nine possible combinations.
```{r just, echo = FALSE, fig.cap = "All nine combinations of `hjust` and `vjust`.", fig.asp = 0.5, fig.width = 4.5, out.width = "60%"}
vjust <- c(bottom = 0, center = 0.5, top = 1)
hjust <- c(left = 0, center = 0.5, right = 1)
df <- tidyr::crossing(hj = names(hjust), vj = names(vjust)) %>%
mutate(
y = vjust[vj],
x = hjust[hj],
label = paste0("hjust = '", hj, "'\n", "vjust = '", vj, "'")
)
ggplot(df, aes(x, y)) +
geom_point(colour = "grey70", size = 5) +
geom_point(size = 0.5, colour = "red") +
geom_text(aes(label = label, hjust = hj, vjust = vj), size = 4) +
labs(x = NULL, y = NULL)
```
Remember, in addition to `geom_text()`, you have many other geoms in ggplot2 available to help annotate your plot. A few ideas:
* Use `geom_hline()` and `geom_vline()` to add reference lines. I often make
them thick (`size = 2`) and white (`colour = white`), and draw them
underneath the primary data layer. That makes them easy to see, without
drawing attention away from the data.
* Use `geom_rect()` to draw a rectangle around points of interest. The
boundaries of the rectangle are defined by aesthetics `xmin`, `xmax`,
`ymin`, `ymax`.
* Use `geom_segment()` with the `arrow` argument to draw attention
to a point with an arrow. Use aesthetics `x` and `y` to define the
starting location, and `xend` and `yend` to define the end location.
The only limit is your imagination (and your patience with positioning annotations to be aesthetically pleasing)!
### Exercises
1. Use `geom_text()` with infinite positions to place text at the
four corners of the plot.
1. Read the documentation for `annotate()`. How can you use it to add a text
label to a plot without having to create a tibble?
1. How do labels with `geom_text()` interact with faceting? How can you
add a label to a single facet? How can you put a different label in
each facet? (Hint: think about the underlying data.)
1. What arguments to `geom_label()` control the appearance of the background
box?
1. What are the four arguments to `arrow()`? How do they work? Create a series
of plots that demonstrate the most important options.
## Scales
The third way you can make your plot better for communication is to adjust the scales. Scales control the mapping from data values to things that you can perceive. Normally, ggplot2 automatically adds scales for you. For example, when you type:
```{r default-scales, fig.show = "hide"}
ggplot(mpg, aes(displ, hwy)) +
geom_point(aes(colour = class))
```
ggplot2 automatically adds default scales behind the scenes:
```{r, fig.show = "hide"}
ggplot(mpg, aes(displ, hwy)) +
geom_point(aes(colour = class)) +
scale_x_continuous() +
scale_y_continuous() +
scale_colour_discrete()
```
Note the naming scheme for scales: `scale_` followed by the name of the aesthetic, then `_`, then the name of the scale. The default scales are named according to the type of variable they align with: continuous, discrete, datetime, or date. There are lots of non-default scales which you'll learn about below.
The default scales have been carefully chosen to do a good job for a wide range of inputs. Nevertheless, you might want to override the defaults for two reasons:
* You might want to tweak some of the parameters of the default scale.
This allows you to do things like change the breaks on the axes, or the
key labels on the legend.
* You might want to replace the scale altogether, and use a completely
different algorithm. Often you can do better than the default because
you know more about the data.
### Axis ticks and legend keys
There are two primary arguments that affect the appearance of the ticks on the axes and the keys on the legend: `breaks` and `labels`. Breaks controls the position of the ticks, or the values associated with the keys. Labels controls the text label associated with each tick/key. The most common use of `breaks` is to override the default choice:
```{r}
ggplot(mpg, aes(displ, hwy)) +
geom_point() +
scale_y_continuous(breaks = seq(15, 40, by = 5))
```
You can use `labels` in the same way (a character vector the same length as `breaks`), but you can also set it to `NULL` to suppress the labels altogether. This is useful for maps, or for publishing plots where you can't share the absolute numbers.
```{r}
ggplot(mpg, aes(displ, hwy)) +
geom_point() +
scale_x_continuous(labels = NULL) +
scale_y_continuous(labels = NULL)
```
You can also use `breaks` and `labels` to control the appearance of legends. Collectively axes and legends are called __guides__. Axes are used for x and y aesthetics; legends are used for everything else.
Another use of `breaks` is when you have relatively few data points and want to highlight exactly where the observations occur. For example, take this plot that shows when each US president started and ended their term.
```{r}
presidential %>%
mutate(id = 33 + row_number()) %>%
ggplot(aes(start, id)) +
geom_point() +
geom_segment(aes(xend = end, yend = id)) +
scale_x_date(NULL, breaks = presidential$start, date_labels = "'%y")
```
Note that the specification of breaks and labels for date and datetime scales is a little different:
* `date_labels` takes a format specification, in the same form as
`parse_datetime()`.
* `date_breaks` (not shown here), takes a string like "2 days" or "1 month".
### Legend layout
You will most often use `breaks` and `labels` to tweak the axes. While they both also work for legends, there are a few other techniques you are more likely to use.
To control the overall position of the legend, you need to use a `theme()` setting. We'll come back to themes at the end of the chapter, but in brief, they control the non-data parts of the plot. The theme setting `legend.position` controls where the legend is drawn:
```{r fig.asp = 1, fig.align = "default", out.width = "50%", fig.width = 4}
base <- ggplot(mpg, aes(displ, hwy)) +
geom_point(aes(colour = class))
base + theme(legend.position = "left")
base + theme(legend.position = "top")
base + theme(legend.position = "bottom")
base + theme(legend.position = "right") # the default
```
You can also use `legend.position = "none"` to suppress the display of the legend altogether.
To control the display of individual legends, use `guides()` along with `guide_legend()` or `guide_colourbar()`. The following example shows two important settings: controlling the number of rows the legend uses with `nrow`, and overriding one of the aesthetics to make the points bigger. This is particularly useful if you have used a low `alpha` to display many points on a plot.
```{r}
ggplot(mpg, aes(displ, hwy)) +
geom_point(aes(colour = class)) +
geom_smooth(se = FALSE) +
theme(legend.position = "bottom") +
guides(colour = guide_legend(nrow = 1, override.aes = list(size = 4)))
```
### Replacing a scale
Instead of just tweaking the details a little, you can instead replace the scale altogether. There are two types of scales you're mostly likely to want to switch out: continuous position scales and colour scales. Fortunately, the same principles apply to all the other aesthetics, so once you've mastered position and colour, you'll be able to quickly pick up other scale replacements.
It's very useful to plot transformations of your variable. For example, as we've seen in [diamond prices](diamond-prices) it's easier to see the precise relationship between `carat` and `price` if we log transform them:
```{r, fig.align = "default", out.width = "50%"}
ggplot(diamonds, aes(carat, price)) +
geom_bin2d()
ggplot(diamonds, aes(log10(carat), log10(price))) +
geom_bin2d()
```
However, the disadvantage of this transformation is that the axes are now labelled with the transformed values, making it hard to interpret the plot. Instead of doing the transformation in the aesthetic mapping, we can instead do it with the scale. This is visually identical, except the axes are labelled on the original data scale.
```{r}
ggplot(diamonds, aes(carat, price)) +
geom_bin2d() +
scale_x_log10() +
scale_y_log10()
```
Another scale that is frequently customised is colour.The default categorical scale picks colours that are evenly spaced around the colour wheel. Useful alternatives are the ColorBrewer scales which have been hand tuned to work better for people with common types of colour blindness. The two plots below look similar, but there is enough difference in the shades of red and green that the dots on the right can be distinguished even by people with red-green colour blindness.
```{r, fig.align = "default", out.width = "50%"}
ggplot(mpg, aes(displ, hwy)) +
geom_point(aes(color = drv))
ggplot(mpg, aes(displ, hwy)) +
geom_point(aes(color = drv)) +
scale_colour_brewer(palette = "Set1")
```
Don't forget simpler techniques. If there are just a few colours, you can add a redundant shape mapping. This will also help ensure your plot is interpretable in black and white.
```{r}
ggplot(mpg, aes(displ, hwy)) +
geom_point(aes(color = drv, shape = drv)) +
scale_colour_brewer(palette = "Set1")
```
The ColorBrewer scales are documented online at <http://colorbrewer2.org/> and made available in R via the __RColorBrewer__ package, by Erich Neuwirth. Figure \@ref(fig:brewer) shows the complete list of all palettes. The sequential (top) and diverging (bottom) palettes are particularly useful if your categorical values are ordered, or have a "middle". This often arises if you've used `cut()` to make a continuous variable into a categorical variable.
```{r brewer, fig.asp = 2.5, echo = FALSE, fig.cap = "All ColourBrewer scales."}
par(mar = c(0, 3, 0, 0))
RColorBrewer::display.brewer.all()
```
When you have a predefined mapping between values and colours, use `scale_colour_manual()`. For example, if we map presidential party to colour, we want to use the standard mapping of red for Republicans and blue for Democrats:
```{r}
presidential %>%
mutate(id = 33 + row_number()) %>%
ggplot(aes(start, id, colour = party)) +
geom_point() +
geom_segment(aes(xend = end, yend = id)) +
scale_colour_manual(values = c(Republican = "red", Democratic = "blue"))
```
For continuous colour, you can use the built-in `scale_colour_gradient()` or `scale_fill_gradient()`. If you have a diverging scale, you can use `scale_colour_gradient2()`. That allows you to give, for example, positive and negative values different colours. That's sometimes also useful if you want to distinguish points above or below the mean.
Another option is `scale_colour_viridis()` provided by the __viridis__ package. It's a continuous analog of the categorical ColorBrewer scales. The designers, Nathaniel Smith and Stéfan van der Walt, carefully tailored a continuous colour scheme that has good perceptual properties. Here's an example from the viridis vignette.
```{r, fig.align = "default", fig.asp = 1, out.width = "50%", fig.width = 4}
df <- tibble(
x = rnorm(10000),
y = rnorm(10000)
)
ggplot(df, aes(x, y)) +
geom_hex() +
coord_fixed()
ggplot(df, aes(x, y)) +
geom_hex() +
viridis::scale_fill_viridis() +
coord_fixed()
```
Note that all colour scales come in two variety: `scale_colour_x()` and `scale_fill_x()` for the `colour` and `fill` aesthetics respectively (the colour scales are available in both UK and US spellings).
### Exercises
1. Why doesn't the following code override the default scale?
```{r fig.show = "hide"}
ggplot(df, aes(x, y)) +
geom_hex() +
scale_colour_gradient(low = "white", high = "red") +
coord_fixed()
```
1. What is the first argument to every scale? How does it compare to `labs()`?
1. Change the display of the presidential terms by:
1. Combining the two variants shown above.
1. Improving the display of the y axis.
1. Labelling each term with the name of the president.
1. Adding informative plot labels.
1. Placing breaks every 4 years (this is trickier than it seems!).
1. Use `override.aes` to make the legend on the following plot easier to see.
```{r, dev = "png", out.width = "50%"}
ggplot(diamonds, aes(carat, price)) +
geom_point(aes(colour = cut), alpha = 1/20)
```
## Zooming
There are three ways to control the plot limits:
1. Adjusting what data are plotted
1. Setting the limits in each scale
1. Setting `xlim` and `ylim` in `coord_cartesian()`
To zoom in on a region of the plot, it's generally best to use `coord_cartesian()`. Compare the following two plots:
```{r out.width = "50%", fig.align = "default", message = FALSE}
ggplot(mpg, mapping = aes(displ, hwy)) +
geom_point(aes(color = class)) +
geom_smooth() +
coord_cartesian(xlim = c(5, 7), ylim = c(10, 30))
mpg %>%
filter(displ >= 5, displ <= 7, hwy >= 10, hwy <= 30) %>%
ggplot(aes(displ, hwy)) +
geom_point(aes(color = class)) +
geom_smooth()
```
You can also set the `limits` on individual scales. Reducing the limits is basically equivalent to subsetting the data. It is generally more useful if you want _expand_ the limits, for example, to match scales across different plots. For example, if we extract two classes of cars and plot them separately, it's difficult to compare the plots because all three scales (the x-axis, the y-axis, and the colour aesthetic) have different ranges.
```{r out.width = "50%", fig.align = "default", fig.width = 4}
suv <- mpg %>% filter(class == "suv")
compact <- mpg %>% filter(class == "compact")
ggplot(suv, aes(displ, hwy, colour = drv)) +
geom_point()
ggplot(compact, aes(displ, hwy, colour = drv)) +
geom_point()
```
One way to overcome this problem is to share scales across multiple plots, training the scales with the `limits` of the full data.
```{r out.width = "50%", fig.align = "default", fig.width = 4}
x_scale <- scale_x_continuous(limits = range(mpg$displ))
y_scale <- scale_y_continuous(limits = range(mpg$hwy))
col_scale <- scale_colour_discrete(limits = unique(mpg$drv))
ggplot(suv, aes(displ, hwy, colour = drv)) +
geom_point() +
x_scale +
y_scale +
col_scale
ggplot(compact, aes(displ, hwy, colour = drv)) +
geom_point() +
x_scale +
y_scale +
col_scale
```
In this particular case, you could have simply used faceting, but this technique is useful more generally, if for instance, you want spread plots over multiple pages of a report.
## Themes
Finally, you can customise the non-data elements of your plot with a theme:
```{r, message = FALSE}
ggplot(mpg, aes(displ, hwy)) +
geom_point(aes(color = class)) +
geom_smooth(se = FALSE) +
theme_bw()
```
ggplot2 includes eight themes by default, as shown in Figure \@ref(fig:themes). Many more are included in add-on packages like __ggthemes__ (<https://github.com/jrnold/ggthemes>), by Jeffrey Arnold.
```{r themes, echo = FALSE, fig.cap = "The eight themes built-in to ggplot2."}
knitr::include_graphics("images/visualization-themes.png")
```
Many people wonder why the default theme has a grey background. This was a deliberate choice because it puts the data forward while still making the grid lines visible. The white grid lines are visible (which is important because they significantly aid position judgements), but they have little visual impact and we can easily tune them out. The grey background gives the plot a similar typographic colour to the text, ensuring that the graphics fit in with the flow of a document without jumping out with a bright white background. Finally, the grey background creates a continuous field of colour which ensures that the plot is perceived as a single visual entity.
It's also possible to control individual components of each theme, like the size and colour of the font used for the y axis. Unfortunately, this level of detail is outside the scope of this book, so you'll need to read the [ggplot2 book](https://amzn.com/331924275X) for the full details. You can also create your own themes, if you are trying to match a particular corporate or journal style.
## Saving your plots
There are two main ways to get your plots out of R and into your final write-up: `ggsave()` and knitr. `ggsave()` will save the most recent plot to disk:
```{r, fig.show = "none"}
ggplot(mpg, aes(displ, hwy)) + geom_point()
ggsave("my-plot.pdf")
```
```{r, include = FALSE}
file.remove("my-plot.pdf")
```
If you don't specify the `width` and `height` they will be taken from the dimensions of the current plotting device. For reproducible code, you'll want to specify them.
Generally, however, I think you should be assembling your final reports using R Markdown, so I want to focus on the important code chunk options that you should know about for graphics. You can learn more about `ggsave()` in the documentation.
### Figure sizing
The biggest challenge of graphics in R Markdown is getting your figures the right size and shape. There are five main options that control figure sizing: `fig.width`, `fig.height`, `fig.asp`, `out.width` and `out.height`. Image sizing is challenging because there are two sizes (the size of the figure created by R and the size at which it is inserted in the output document), and multiple ways of specifying the size (i.e., height, width, and aspect ratio: pick two of three).
I only ever use three of the five options:
* I find it most aesthetically pleasing for plots to have a consistent
width. To enforce this, I set `fig.width = 6` (6") and `fig.asp = 0.618`
(the golden ratio) in the defaults. Then in individual chunks, I only
adjust `fig.asp`.
* I control the output size with `out.width` and set it to a percentage
of the line width). I default to `out.width = "70%"`
and `fig.align = "center"`. That give plots room to breathe, without taking
up too much space.
* To put multiple plots in a single row I set the `out.width` to
`50%` for two plots, `33%` for 3 plots, or `25%` to 4 plots, and set
`fig.align = "default"`. Depending on what I'm trying to illustrate (e.g.
show data or show plot variations), I'll also tweak `fig.width`, as
discussed below.
If you find that you're having to squint to read the text in your plot, you need to tweak `fig.width`. If `fig.width` is larger than the size the figure is rendered in the final doc, the text will be too small; if `fig.width` is smaller, the text will be too big. You'll often need to do a little experimentation to figure out the right ratio between the `fig.width` and the eventual width in your document. To illustrate the principle, the following three plots have `fig.width` of 4, 6, and 8 respectively:
```{r, include = FALSE}
plot <- ggplot(mpg, aes(displ, hwy)) + geom_point()
```
```{r, fig.width = 4, echo = FALSE}
plot
```
```{r, fig.width = 6, echo = FALSE}
plot
```
```{r, fig.width = 8, echo = FALSE}
plot
```
If you want to make sure the font size is consistent across all your figures, whenever you set `out.width`, you'll also need to adjust `fig.width` to maintain the same ratio with your default `out.width`. For example, if your default `fig.width` is 6 and `out.width` is 0.7, when you set `out.width = "50%"` you'll need to set `fig.width` to 4.3 (6 * 0.5 / 0.7).
### Other important options
When mingling code and text, like I do in this book, I recommend setting `fig.show = "hold"` so that plots are shown after the code. This has the pleasant side effect of forcing you to break up large blocks of code with their explanations.
To add a caption to the plot, use `fig.cap`. In R Markdown this will change the figure from inline to "floating".
If you're producing PDF output, the default graphics type is PDF. This is a good default because PDFs are high quality vector graphics. However, they can produce very large and slow plots if you are displaying thousands of points. In that case, set `dev = "png"` to force the use of PNGs. They are slightly lower quality, but will be much more compact.
It's a good idea to name code chunks that produce figures, even if you don't routinely label other chunks. The chunk label is used to generate the file name of the graphic on disk, so naming your chunks makes it much easier to pick out plots and reuse in other circumstances (i.e. if you want to quickly drop a single plot into an email or a tweet).
## Learning more
The absolute best place to learn more is the ggplot2 book: [_ggplot2: Elegant graphics for data analysis_](https://amzn.com/331924275X). It goes into much more depth about the underlying theory, and has many more examples of how to combine the individual pieces to solve practical problems. Unfortunately, the book is not available online for free, although you can find the source code at <https://github.com/hadley/ggplot2-book>.
Another great resource is the ggplot2 extensions guide <http://www.ggplot2-exts.org/>. This site lists many of the packages that extend ggplot2 with new geoms and scales. It's a great place to start if you're trying to do something that seems hard with ggplot2.