-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathOPN.py
864 lines (720 loc) · 41.9 KB
/
OPN.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
# 原先的版本是将id直接拼接送进网络优化用户/物品特征
# 该版本先将id转换为embedding,用embedding拼接,然后优化用户/物品的特征
# %matplotlib inline
import os, time, pickle, argparse, sys
import pickle as pk
import pandas as pd
import argparse
import torch
import torch.nn as nn
import torch.nn.functional as F
import numpy as np
from openpyxl import load_workbook
from scipy.stats import beta
torch.set_printoptions(threshold=10000)
np.set_printoptions(threshold=np.inf)
parser = argparse.ArgumentParser(description='RSAutoML')
parser.add_argument('--Train_Method', type=str, default='AutoML', help='options: AutoML, Supervised')
parser.add_argument('--Policy_Type', type=int, default=1, help='options: 0, 1, 2, 3, 4, 5')
parser.add_argument('--Val_Type', type=str, default='last_batch', help='options: last_batch, last_random')
parser.add_argument('--Loss_Type', type=str, default='MSE_sigmoid', help='options: MSE_sigmoid MSE_no_sigmoid BCEWithLogitsLoss CrossEntropyLoss')
parser.add_argument('--Data_Set', type=str, default='ml-latest', help='options: ml-20m ml-latest')
parser.add_argument('--Dy_Emb_Num', type=int, default=2, help='options: 1, 2')
parser.add_argument('--Reward_Base', type=str, default=None, help='options: None, last_loss, ave_loss')
parser.add_argument('--last_num', type=int, default=5, help='options: 1, 2')
args = parser.parse_args()
Model_Gpu = torch.cuda.is_available()
device = torch.device('cuda:0' if Model_Gpu else 'cpu')
DATA_PATH = '../data'
DATA_SET = args.Data_Set
Batch_Size = 500 # batch size
LR_model = 0.003 # learning rate, for RS model
LR_darts = 0.0001 # learning rate, for policy network
Epoch = 1 # train epoch
Beta_Beta = 20 # beta for Beta distribution
H_alpha = 0 # for nn.KLDivLoss 0.001
# TODO 改参数 bin: MSE_sigmoid multi: CrossEntropyLoss
if DATA_SET == 'ml-20m':
Train_Size = 15000000 # training dataset size
elif DATA_SET == 'ml-latest':
Train_Size = 22000000 # training dataset size
Test_Size = 5000000 # training dataset size
Emb_Size = [2, 4, 8, 16, 64, 128] # 1,2,4,8,16,32,64,128,256,512
cross_emb_idx = 2
cross_emb_size = Emb_Size[cross_emb_idx] # for object-aware
Emb_Con_Size = [2+cross_emb_size, 4+cross_emb_size, 8+cross_emb_size, 16+cross_emb_size, 64+cross_emb_size, 128]
Train_Method = args.Train_Method
Policy_Type = args.Policy_Type
Types = ['Policy0: embedding for popularity',
'Policy1: embedding for popularity + last_weights',
'Policy2: embedding for popularity + last_weights + last_loss',
'Policy3: popularity one_hot',
'Policy4: popularity one_hot + last_weights',
'Policy5: popularity one_hot + last_weights + last_loss']
Val_Type = args.Val_Type
Dy_Emb_Num = args.Dy_Emb_Num # dynamic num of embedding to adjust, 1 for user, 2 for user & movie
Reward_Base = args.Reward_Base
last_num = args.last_num
Loss_Type = args.Loss_Type
ControllerLoss = nn.CrossEntropyLoss(reduce=False)
print('\n****************************************************************************************\n')
print('os.getpid(): ', os.getpid())
if torch.cuda.is_available():
print('torch.cuda: ', torch.cuda.is_available(), torch.cuda.current_device(), torch.cuda.device_count(), torch.cuda.get_device_name(0), torch.cuda.device(torch.cuda.current_device()))
else:
print('GPU is not available!!!')
print('Train_Size: ', Train_Size)
print('Test_Size: ', Test_Size)
print('Emb_Size: ', Emb_Size)
print('Batch_Size: ', Batch_Size)
print('Dy_Emb_Num: ', Dy_Emb_Num)
print('Loss_Type: ', Loss_Type)
print('Train_Method: ', Train_Method)
print('Policy_Type: ', Types[Policy_Type])
print('Val_Type: ', Val_Type)
print('Beta_Beta: ', Beta_Beta)
print('H_alpha: ', H_alpha)
print('LR_model: ', LR_model)
print('LR_darts: ', LR_darts)
print('\n****************************************************************************************\n')
def load_data():
train_features, test_features, train_target, test_target \
= pickle.load(open('{}/{}_TrainTest_{}_{}.data'.format(DATA_PATH, DATA_SET, Train_Size, Output_Dim), mode='rb'))
print("len(train_features): ", len(train_features))
print("len(test_features): ", len(test_features))
test_features, test_target = test_features[:Test_Size], test_target[:Test_Size]
genome_scores_dict = pickle.load(open('{}/{}_GenomeScoresDict_{}.data'.format(DATA_PATH, DATA_SET, Output_Dim), mode='rb'))
train_feature_data = pd.DataFrame(train_features, columns=['userId', 'movieId', 'user_frequency', 'movie_frequency'])
test_feature_data = pd.DataFrame(test_features, columns=['userId', 'movieId', 'user_frequency', 'movie_frequency'])
User_Num = max(train_feature_data['userId'].max() + 1, test_feature_data['userId'].max() + 1) # 138494
Movie_Num = max(train_feature_data['movieId'].max() + 1, test_feature_data['movieId'].max() + 1) # 131263
max_user_popularity = max(train_feature_data['user_frequency'].max()+1, test_feature_data['user_frequency'].max()+1)
max_movie_popularity = max(train_feature_data['movie_frequency'].max() + 1, test_feature_data['movie_frequency'].max() + 1)
return train_features, test_features, train_target, test_target, genome_scores_dict, \
train_feature_data, test_feature_data, len(train_features), len(test_features), \
User_Num, Movie_Num, max_user_popularity, max_movie_popularity
def Batch_Losses(Loss_Type, prediction, target):
if Loss_Type == 'MSE_sigmoid':
return nn.MSELoss(reduction='none')(nn.Sigmoid()(prediction), target)
elif Loss_Type == 'MSE_no_sigmoid':
return nn.MSELoss(reduction='none')(prediction, target)
elif Loss_Type == 'BCEWithLogitsLoss':
return nn.BCEWithLogitsLoss(reduction='none')(prediction, target)
elif Loss_Type == 'CrossEntropyLoss':
return nn.CrossEntropyLoss(reduction='none')(prediction, target)
else:
print('No such Loss_Type.')
def Batch_Accuracies(Loss_Type, prediction, target):
with torch.no_grad():
if Loss_Type == 'MSE_sigmoid':
predicted = 1 * (torch.sigmoid(prediction).data > 0.5)
elif Loss_Type == 'MSE_no_sigmoid':
predicted = 1 * (prediction > 0.5)
elif Loss_Type == 'BCEWithLogitsLoss':
predicted = 1 * (torch.sigmoid(prediction).data > 0.5)
elif Loss_Type == 'CrossEntropyLoss':
_, predicted = torch.max(prediction, 1)
else:
print('No such Loss_Type.')
Batch_Accuracies = 1 * (predicted == target)
Batch_Accuracies = list(Batch_Accuracies.detach().cpu().numpy())
return Batch_Accuracies
def Beta(length, popularity, be=10):
x = [i/length for i in range(length+1)]
cdfs = [beta.cdf(x[i+1], popularity, be) - beta.cdf(x[i], popularity, be) for i in range(length)]
return cdfs
class Policy(nn.Module):
def __init__(self, Setting_Popularity, Setting_Weight, Policy_Type):
super(Policy, self).__init__()
self.Policy_Type = Policy_Type
if self.Policy_Type == 0:
self.transfrom_input_length = Setting_Popularity[1]
elif self.Policy_Type == 1:
self.transfrom_input_length = Setting_Popularity[1] + Setting_Weight[1]
elif self.Policy_Type == 2:
self.transfrom_input_length = Setting_Popularity[1] + Setting_Weight[1] + 1
elif self.Policy_Type == 3:
self.transfrom_input_length = Setting_Popularity[0]
elif self.Policy_Type == 4:
self.transfrom_input_length = Setting_Popularity[0] + Setting_Weight[1]
elif self.Policy_Type == 5:
self.transfrom_input_length = Setting_Popularity[0] + Setting_Weight[1] + 1
else:
print('No such Policy_Type 1')
if self.Policy_Type in [0, 1, 2]:
self.emb_popularity = nn.Embedding(num_embeddings=Setting_Popularity[0], embedding_dim=Setting_Popularity[1])
self.batch_norm = nn.BatchNorm1d(Setting_Popularity[1])
elif self.Policy_Type in [3, 4, 5]:
self.emb_popularity = nn.Embedding(num_embeddings=Setting_Popularity[0], embedding_dim=Setting_Popularity[0]).to(dtype=torch.float32)
self.emb_popularity.weight.data = torch.eye(Setting_Popularity[0])
self.emb_popularity.weight.requires_grad = False
else:
print('No such Policy_Type 2')
self.transfrom = nn.Sequential(
nn.Linear(self.transfrom_input_length, 512),
nn.BatchNorm1d(512),
nn.Tanh(),
nn.Linear(512, 2)) # remain dim, increase dim
# nn.Softmax(dim=1))
# popularity:出现频率
# emb_sizes:上一次的embedding大小
# last_loss:上一次的损失值
def forward(self, popularity, emb_sizes, last_loss):
'''
popularity: (batch_size)
emb_sizes: (batch_size)
output: (batch_size x 3)
'''
# emb_popularity: (batch_size x emb_size)
emb_popularity = self.emb_popularity(popularity)
if self.Policy_Type in [0, 1, 2]:
transformed_emb_popularity = self.batch_norm(emb_popularity)
elif self.Policy_Type in [3, 4, 5]:
transformed_emb_popularity = emb_popularity
else:
transformed_emb_popularity = None
print('No such Policy_Type 3')
if self.Policy_Type in [0, 3]:
concatenation = transformed_emb_popularity
elif self.Policy_Type in [1, 4]:
last_weights = nn.functional.one_hot(emb_sizes, num_classes=len(Emb_Size)).float()
concatenation = torch.cat((transformed_emb_popularity, last_weights), 1)
elif self.Policy_Type in [2, 5]:
last_weights = nn.functional.one_hot(emb_sizes, num_classes=len(Emb_Size)).float()
concatenation = torch.cat((transformed_emb_popularity, last_weights, last_loss), 1)
else:
print('No such Policy_Type 4')
return self.transfrom(concatenation) # 返回一个Embedding大小调整方案,扩大或不变
# 这个是Linear transform部分,负责把不同embedding size的embedding结果转换成相同的大小,然后对两个emb做连接
class RS_MLP(nn.Module):
def __init__(self, Output_Dim, Dynamic_Emb_Num):
super(RS_MLP, self).__init__()
# self.emb_user = nn.Embedding(num_embeddings=User_Num, embedding_dim=sum(Emb_Size))
# self.emb_movie = nn.Embedding(num_embeddings=Movie_Num, embedding_dim=sum(Emb_Size))
self.emb_user = nn.ModuleList(nn.Embedding(num_embeddings=User_Num, embedding_dim=emb_size) for emb_size in Emb_Size)
self.emb_movie = nn.ModuleList(nn.Embedding(num_embeddings=Movie_Num, embedding_dim=emb_size) for emb_size in Emb_Size)
self.cross_emb_user = nn.Embedding(num_embeddings=User_Num, embedding_dim=cross_emb_size)
self.cross_emb_movie = nn.Embedding(num_embeddings=Movie_Num, embedding_dim=cross_emb_size)
# for emb in self.emb_user + self.emb_movie:
# emb.to(device)
self.bn_user = nn.BatchNorm1d(max(Emb_Size))
self.bn_movie = nn.BatchNorm1d(max(Emb_Size))
# 长度最大的embedding不会被转换,所以我们要加上一个转换模块
self.user_cross_linear = nn.Linear(Emb_Size[len(Emb_Size)-1] + cross_emb_size, Emb_Size[len(Emb_Size)-1])
self.movie_cross_linear = nn.Linear(Emb_Size[len(Emb_Size)-1] + cross_emb_size, Emb_Size[len(Emb_Size)-1])
# self.user_bn = nn.BatchNorm1d(Emb_Size[len(Emb_Size) - 1])
# self.movie_bn = nn.BatchNorm1d(Emb_Size[len(Emb_Size) - 1])
# ModuleList是一个列表,内部可以放很多模型,用的时候指定索引就可以了
self.W_user = nn.ModuleList([nn.Linear(Emb_Con_Size[i], Emb_Con_Size[i + 1]) for i in range(len(Emb_Con_Size) - 1)])
self.W_movie = nn.ModuleList([nn.Linear(Emb_Con_Size[i], Emb_Con_Size[i + 1]) for i in range(len(Emb_Con_Size) - 1)])
self.my_W_user = nn.ModuleList([nn.Linear(Emb_Size[i], Emb_Size[i + 1]) for i in range(len(Emb_Size) - 1)])
self.my_W_movie = nn.ModuleList([nn.Linear(Emb_Size[i], Emb_Size[i + 1]) for i in range(len(Emb_Size) - 1)])
self.tanh = nn.Tanh()
self.movie_transfrom = nn.Sequential( # nn.BatchNorm1d(1128),
nn.Linear(1128, 512),
nn.BatchNorm1d(512),
nn.Tanh(),
nn.Linear(512, max(Emb_Size)))
self.transfrom = nn.Sequential(
nn.BatchNorm1d(max(Emb_Size) * 2),
nn.Linear(max(Emb_Size) * 2, 512),
nn.BatchNorm1d(512),
nn.Tanh(),
nn.Linear(512, Output_Dim))
self.den = Dynamic_Emb_Num
# setattr(self, 'z', 666)
# 注意,这里的size都是索引值
def forward(self, u_emb_sizes, m_emb_sizes, userId, movieId, movie_vec):
'''
u_emb_sizes: (batch_size)
m_emb_sizes: (batch_size)
'''
# u_weight: (batch_size x emb_num)
# m_weight: (batch_size x emb_num)
# num_classes:指定one_hot的最大长度
u_weight = nn.functional.one_hot(u_emb_sizes, num_classes=len(Emb_Size))
if self.den == 2:
m_weight = nn.functional.one_hot(m_emb_sizes, num_classes=len(Emb_Size))
# user_emb是一个列表,存储了用户所有大小的embedding结果
# movie_emb也是类似的
user_emb = [self.emb_user[i](userId) for i in range(len(Emb_Size))]
# cross_user_emb = self.cross_emb_user(userId)
movie_emb = None if self.den == 1 else [self.emb_movie[i](movieId) for i in range(len(Emb_Size))]
# cross_movie_emb = self.cross_emb_movie(movieId)
user_embs = []
for i in range(len(Emb_Size)):
# temp = user_emb[i]
temp = torch.cat((user_emb[i], self.emb_movie[cross_emb_idx](movieId)), 1)
if i == len(Emb_Size) - 1:
temp = self.user_cross_linear(temp)
# 这层for循环就是把PN给出来的不规则大小的embedding经过MLP层层映射最后转换成相同大小的embedding
for j in range(i, len(Emb_Size) - 1):
temp = self.W_user[j](temp)
user_embs.append(temp) # 最后的值加入到这里面
if self.den == 2:
movie_embs = []
for i in range(len(Emb_Size)):
# temp = movie_emb[i]
temp = torch.cat((movie_emb[i], self.emb_user[cross_emb_idx](userId)), 1)
if i == len(Emb_Size) - 1:
temp = self.movie_cross_linear(temp)
for j in range(i, len(Emb_Size) - 1):
temp = self.W_movie[j](temp)
movie_embs.append(temp)
v_user = sum([torch.reshape(u_weight[:, i], (len(u_weight), -1)) * self.tanh(
self.bn_user(user_embs[i])) for i in range(len(Emb_Size))])
v_movie = sum([torch.reshape(m_weight[:, i], (len(m_weight), -1)) * self.tanh(
self.bn_movie(movie_embs[i])) for i in range(len(Emb_Size))]) if self.den == 2 else self.movie_transfrom(movie_vec)
user_movie = torch.cat((v_user, v_movie), 1)
return self.transfrom(user_movie)
def update_controller(index, features, target):
""" Update user_policy and movie_policy """
if Train_Method == 'AutoML' and index > 0:
if Val_Type == 'last_random':
val_index = np.random.choice(index, Batch_Size)
batch_train = features[:index][val_index]
batch_train_target = target[:index][val_index]
elif Val_Type == 'last_batch':
batch_train = features[index - Batch_Size:index]
batch_train_target = target[index - Batch_Size:index]
else:
batch_train = None
batch_train_target = None
print('No such Val_Type')
# [:, 0]表示取第0列数据
userId = torch.tensor(batch_train[:, 0], requires_grad=False).to(device)
movieId = torch.tensor(batch_train[:, 1], requires_grad=False).to(device)
userPop = torch.tensor(batch_train[:, 2], requires_grad=False).to(device)
moviePop = torch.tensor(batch_train[:, 3], requires_grad=False).to(device)
old_uw = torch.tensor(user_weights[batch_train[:, 0]], requires_grad=False).to(device)
old_mw = torch.tensor(movie_weights[batch_train[:, 1]], requires_grad=False).to(device)
old_ul = torch.tensor(user_losses[batch_train[:, 0], :], requires_grad=False).to(device)
old_ml = torch.tensor(movie_losses[batch_train[:, 1], :], requires_grad=False).to(device)
movie_vec = torch.tensor([genome_scores_dict[str(batch_train[:, 1][i])] for i in range(len(batch_train[:, 1]))],
requires_grad=False).to(device) if Dy_Emb_Num == 1 else None
batch_train_target = torch.tensor(batch_train_target,
dtype=torch.int64 if Loss_Type == 'CrossEntropyLoss' else torch.float32,
requires_grad=False).to(device)
if Reward_Base == 'ave_loss':
old_utl = torch.tensor(user_total_losses[batch_train[:, 0]], requires_grad=False).to(device)
old_mtl = torch.tensor(movie_total_losses[batch_train[:, 1]], requires_grad=False).to(device)
old_uc = torch.tensor(user_count[batch_train[:, 0]], requires_grad=False).to(device)
old_mc = torch.tensor(movie_count[batch_train[:, 1]], requires_grad=False).to(device)
# user_adj_prob: (batch_size x 2)
# userPop:用户的频率
# old_uw:老旧的用户embedding大小
# user_adj_weights:模型给出的初步信息,还要经过softmax才能下结论
user_adj_weights = user_policy(userPop, old_uw, old_ul)
# 得出结论,是enlarge还是unchange
# user_adj_prob:代表模型给出的建议
user_adj_prob = nn.functional.softmax(user_adj_weights, dim=-1)
# 要注意,这里的weight都是索引值
mask = old_uw != len(Emb_Size) - 1
# user_adj_samples: (batch_size)
# user_adj_samples:embedding变化量
user_adj_samples = mask * torch.multinomial(user_adj_prob, 1).squeeze(1)
# new_uw: (batch_size)
# new_uw:调整后用户的embedding大小
new_uw = old_uw + user_adj_samples
if Dy_Emb_Num == 2:
# movie_adj_prob: (batch_size x 3)
movie_adj_weights = movie_policy(moviePop, old_mw, old_ml)
movie_adj_prob = nn.functional.softmax(movie_adj_weights, dim=-1)
mask = old_mw != len(Emb_Size) - 1
# movie_adj_samples: (batch_size)
movie_adj_samples = mask * torch.multinomial(movie_adj_prob, 1).squeeze(1)
# new_mw: (batch_size)
new_mw = old_mw + movie_adj_samples
else:
new_mw = 0
with torch.no_grad():
temp_emb_user = model.emb_user
for i in range(len(Emb_Size) - 1):
j = i + 1
part_userId = userId[
((old_uw == i) * (new_uw == j)).nonzero().squeeze(1)]
# 当发现emb需要被增加,模型会将原emb的参数扔进一层网络,得到的新参数被用在新维度的emb中
# 也许作者认为这样可以保留先前的参数吧
if len(part_userId) > 0:
# [part_userId, :]:取第part_userId行的数据
# Change W_user -> my_W_user
model.emb_user[j].weight[part_userId, :] = model.my_W_user[i](
model.emb_user[i].weight[part_userId, :])
if Dy_Emb_Num == 2:
temp_emb_movie = model.emb_movie
for i in range(len(Emb_Size) - 1):
j = i + 1
part_movieId = movieId[
((old_mw == i) * (new_mw == j)).nonzero().squeeze(1)]
if len(part_movieId) > 0:
# Change W_movie -> my_W_movie
model.emb_movie[j].weight[part_movieId, :] = model.my_W_movie[i](
model.emb_movie[i].weight[part_movieId, :])
# rating: (batch_size x 1)
# 在这里把Policy Network调整后的输出送进DRM模型,后面会根据DRM模型的结果来调整PN
rating = model(new_uw, new_mw, userId, movieId, movie_vec)
# 这下面都是在计算损失值了,为调整PN做准备
# rating: (batch_size)
rating = rating.squeeze(1).squeeze(1) if Loss_Type == 'CrossEntropyLoss' else rating.squeeze(1)
# batch_losses: (batch_size)
batch_losses = Batch_Losses(Loss_Type, rating, batch_train_target)
rewards = 1 - batch_losses
model.emb_user = temp_emb_user
if Dy_Emb_Num == 1:
if Reward_Base == 'last_loss':
baseline = 1 - old_ul[:, 0]
rewards = rewards - baseline
elif Reward_Base == 'ave_loss':
last_num_tensor = torch.Tensor([last_num]).repeat(len(old_uc)).to(device)
baseline = 1 - torch.sum(old_utl, dim=1) / torch.where(old_uc < last_num, old_uc, last_num_tensor)
rewards = rewards - baseline
loss = torch.sum(ControllerLoss(user_adj_weights, user_adj_samples) * rewards)
# if index % 100000 == 0:
# print("rewards: ", rewards[:50].tolist())
optimizer_user.zero_grad()
loss.backward()
optimizer_user.step()
elif Dy_Emb_Num == 2:
model.emb_movie = temp_emb_movie
if Reward_Base == 'last_loss':
baseline_u = 1 - old_ul[:, 0]
baseline_m = 1 - old_ml[:, 0]
elif Reward_Base == 'ave_loss':
last_num_tensor = torch.Tensor([last_num]).repeat(len(old_uc)).to(device)
baseline_u = 1 - torch.sum(old_utl, dim=1) / torch.where(old_uc < last_num, old_uc, last_num_tensor)
baseline_m = 1 - torch.sum(old_mtl, dim=1) / torch.where(old_mc < last_num, old_mc, last_num_tensor)
rewards_u = rewards - baseline_u
rewards_m = rewards - baseline_m
loss_u = torch.sum(ControllerLoss(user_adj_weights, user_adj_samples) * rewards_u)
loss_m = torch.sum(ControllerLoss(movie_adj_weights, movie_adj_samples) * rewards_m)
# if index % 100000 == 0:
# print("rewards_u: ", rewards_u[:50].tolist())
# print("rewards_m: ", rewards_m[:50].tolist())
optimizer_user.zero_grad()
loss_u.backward()
optimizer_user.step()
optimizer_movie.zero_grad()
loss_m.backward()
optimizer_movie.step()
def update_RS(index, features, Len_Features, target, mode):
""" Update RS's embeddings and NN """
global train_sample_loss, train_sample_accuracy, user_dims_record, movie_dims_record
index_end = index + Batch_Size
if index_end >= Len_Features:
batch_train = features[index:Len_Features]
batch_train_target = target[index:Len_Features]
else:
batch_train = features[index:index_end]
batch_train_target = target[index:index_end]
userId = torch.tensor(batch_train[:, 0], requires_grad=False).to(device)
movieId = torch.tensor(batch_train[:, 1], requires_grad=False).to(device)
userPop = torch.tensor(batch_train[:, 2], requires_grad=False).to(device)
moviePop = torch.tensor(batch_train[:, 3], requires_grad=False).to(device)
old_uw = torch.tensor(user_weights[batch_train[:, 0]], requires_grad=False).to(device)
old_mw = torch.tensor(movie_weights[batch_train[:, 1]], requires_grad=False).to(device)
old_ul = torch.tensor(user_losses[batch_train[:, 0], :], requires_grad=False).to(device)
old_ml = torch.tensor(user_losses[batch_train[:, 1], :], requires_grad=False).to(device)
movie_vec = torch.tensor([genome_scores_dict[str(batch_train[:, 1][i])] for i in range(len(batch_train[:, 1]))],
requires_grad=False).to(device) if Dy_Emb_Num == 1 else None
batch_train_target = torch.tensor(batch_train_target,
dtype=torch.int64 if Loss_Type == 'CrossEntropyLoss' else torch.float32,
requires_grad=False).to(device)
with torch.no_grad():
# user_adj_prob: (batch_size x 2)
user_adj_weights = user_policy(userPop, old_uw, old_ul)
user_adj_prob = nn.functional.softmax(user_adj_weights, dim=-1)
mask = old_uw != len(Emb_Size) - 1
user_adj = mask * torch.argmax(user_adj_prob, dim=1)
# new_uw: (batch_size)
new_uw = old_uw + user_adj
# if index % 500000 == 0:
# print("old_uw: ", old_uw)
# print("new_uw: ", new_uw)
for i in range(len(Emb_Size) - 1):
j = i + 1
part_userId = userId[((old_uw == i) * (new_uw == j)).nonzero().squeeze(1)]
# 当发现emb需要被增加,模型会将原emb的参数扔进一层网络,得到的新参数被用在新维度的emb中
# 也许作者认为这样可以保留先前的参数吧
if len(part_userId) > 0:
# Change W_user -> my_W_user
model.emb_user[j].weight[part_userId, :] = model.my_W_user[i](
model.emb_user[i].weight[part_userId, :])
if Dy_Emb_Num == 2:
# movie_adj_prob: (batch_size x 2)
movie_adj_weights = movie_policy(moviePop, old_mw, old_ml)
movie_adj_prob = nn.functional.softmax(movie_adj_weights, dim=-1)
mask = old_mw != len(Emb_Size) - 1
movie_adj = mask * torch.argmax(movie_adj_prob, dim=1)
# new_mw: (batch_size x emb_num)
new_mw = old_mw + movie_adj
# if index % 500000 == 0:
# print("old_mw: ", old_mw)
# print("new_mw: ", new_mw)
for i in range(len(Emb_Size) - 1):
j = i + 1
part_movieId = movieId[
((old_mw == i) * (new_mw == j)).nonzero().squeeze(1)]
if len(part_movieId) > 0:
# Change W_movie -> my_W_movie
model.emb_movie[j].weight[part_movieId, :] = model.my_W_movie[i](
model.emb_movie[i].weight[part_movieId, :])
else:
new_mw = 0
rating = model(new_uw, new_mw, userId, movieId, movie_vec)
rating = rating.squeeze(1).squeeze(1) if Loss_Type == 'CrossEntropyLoss' else rating.squeeze(1)
# batch_losses: (batch_size)
batch_losses = Batch_Losses(Loss_Type, rating, batch_train_target)
loss = sum(batch_losses)
batch_accuracies = Batch_Accuracies(Loss_Type, rating, batch_train_target)
train_sample_loss += list(batch_losses.detach().cpu().numpy())
losses[mode].append(loss.detach().cpu().numpy())
train_sample_accuracy += batch_accuracies
accuracies[mode].append((sum(batch_accuracies), len(batch_train_target)))
user_dims_record += [Emb_Size[item] for item in new_uw.detach().cpu()]
if Dy_Emb_Num == 2:
movie_dims_record += [Emb_Size[item] for item in new_mw.detach().cpu()]
if Train_Method == 'AutoML':
optimizer_model.zero_grad()
loss.backward()
optimizer_model.step()
elif Train_Method == 'Supervised':
optimizer_whole.zero_grad()
loss.backward()
optimizer_whole.step()
else:
print('No such Train_Method')
""" Update old_uw old_mw old_ul old_ml """
user_weights[batch_train[:, 0]] = new_uw.detach().cpu().numpy()
movie_weights[batch_train[:, 1]] = new_mw.detach().cpu().numpy() if Dy_Emb_Num == 2 else np.zeros((len(batch_train),))
user_losses[batch_train[:, 0], :] = np.reshape(batch_losses.detach().cpu().numpy(), (-1, 1))
movie_losses[batch_train[:, 1], :] = np.reshape(batch_losses.detach().cpu().numpy(), (-1, 1))
final_user_pop[batch_train[:, 0]] = batch_train[:, 2]
final_movie_pop[batch_train[:, 1]] = batch_train[:, 3]
if Reward_Base == 'ave_loss':
user_total_losses[batch_train[:, 0], 1:last_num] = user_total_losses[batch_train[:, 0], 0:last_num-1]
movie_total_losses[batch_train[:, 1], 1:last_num] = movie_total_losses[batch_train[:, 1], 0:last_num-1]
user_total_losses[batch_train[:, 0], 0] = user_losses[batch_train[:, 0], 0]
movie_total_losses[batch_train[:, 1], 0] = movie_losses[batch_train[:, 1], 0]
user_count[batch_train[:, 0]] += 1
movie_count[batch_train[:, 1]] += 1
if __name__ == "__main__":
Output_Dim = 5 if Loss_Type == 'CrossEntropyLoss' else 1
# Output_Dim = 5
# if Loss_Type == 'CrossEntropyLoss':
# Output_Dim = 1
# User_Num:用户数量
# Movie_Num:电影数量
train_features, test_features, train_target, test_target, genome_scores_dict, \
train_feature_data, test_feature_data, Len_Train_Features, Len_Test_Features, \
User_Num, Movie_Num, max_user_popularity, max_movie_popularity = load_data()
train_feature_data, test_feature_data = train_feature_data[:Len_Train_Features], test_feature_data[:Len_Test_Features]
Emb_Split = [0] + [sum(Emb_Size[0:i + 1]) for i in range(len(Emb_Size))] # [0, 2, 18, 146]
Setting_User_Popularity = [max_user_popularity, 32]
Setting_Movie_Popularity = [max_movie_popularity, 32]
Setting_User_Weight = [User_Num, len(Emb_Size)]
Setting_Movie_Weight = [Movie_Num, len(Emb_Size)]
if Train_Method == 'AutoML' and H_alpha > 0:
Beta_Dis = nn.Embedding(num_embeddings=max(max_user_popularity, max_movie_popularity), embedding_dim=len(Emb_Size)).to(dtype=torch.float32)
Beta_Dis.weight.data = torch.tensor(np.array([Beta(len(Emb_Size), popularity, Beta_Beta) for popularity in range(1, max(max_user_popularity, max_movie_popularity) + 1)]), dtype=torch.float32, requires_grad=False)
Beta_Dis.weight.requires_grad = False
Beta_Dis.to(device)
criterion = nn.KLDivLoss(reduction='sum')
user_policy = Policy(Setting_User_Popularity, Setting_User_Weight, Policy_Type)
movie_policy = Policy(Setting_Movie_Popularity, Setting_Movie_Weight, Policy_Type)
model = RS_MLP(Output_Dim, Dy_Emb_Num)
user_policy.to(device)
movie_policy.to(device)
model.to(device)
# 定义总参数量、可训练参数量及非可训练参数量变量
Total_params = 0
Trainable_params = 0
NonTrainable_params = 0
# # 遍历model.parameters()返回的全局参数列表
# for param in movie_policy.parameters():
# mulValue = np.prod(param.size()) # 使用numpy prod接口计算参数数组所有元素之积
# Total_params += mulValue # 总参数量
# if param.requires_grad:
# Trainable_params += mulValue # 可训练参数量
# else:
# NonTrainable_params += mulValue # 非可训练参数量
#
# print(f'Total params: {Total_params}')
# print(f'Trainable params: {Trainable_params}')
# print(f'Non-trainable params: {NonTrainable_params}')
# print(model)
if Model_Gpu:
print('\n========================================================================================\n')
print('Model_Gpu?:', next(model.parameters()).is_cuda, next(user_policy.parameters()).is_cuda, next(movie_policy.parameters()).is_cuda)
print('Memory: ', torch.cuda.memory_allocated(0) / 1024 ** 3, 'GB', torch.cuda.memory_cached(0) / 1024 ** 3, 'GB')
print('\n========================================================================================\n')
user_weights = np.zeros((User_Num,), dtype=np.int64)
movie_weights = np.zeros((Movie_Num,), dtype=np.int64)
final_user_pop = np.zeros((User_Num,), dtype=np.int64)
final_movie_pop = np.zeros((User_Num,), dtype=np.int64)
user_losses = np.ones((User_Num, 1), dtype=np.float32)
movie_losses = np.ones((Movie_Num, 1), dtype=np.float32)
if Reward_Base == 'ave_loss':
user_total_losses = np.zeros((User_Num, last_num), dtype=np.float32)
movie_total_losses = np.zeros((Movie_Num, last_num), dtype=np.float32)
user_count = np.zeros((User_Num,), dtype=np.float32)
movie_count = np.zeros((Movie_Num,), dtype=np.float32)
t0 = time.time()
optimizer_model = torch.optim.Adam(filter(lambda p: p.requires_grad, model.parameters()), lr=LR_model, weight_decay=0)
optimizer_user = torch.optim.Adam(filter(lambda p: p.requires_grad, user_policy.parameters()), lr=LR_darts, weight_decay=0)
optimizer_movie = torch.optim.Adam(filter(lambda p: p.requires_grad, movie_policy.parameters()), lr=LR_darts, weight_decay=0)
optimizer_darts = torch.optim.Adam(filter(lambda p: p.requires_grad, list(user_policy.parameters()) + list(movie_policy.parameters())), lr=LR_darts, weight_decay=0)
optimizer_whole = torch.optim.Adam(filter(lambda p: p.requires_grad, list(model.parameters()) + list(user_policy.parameters()) + list(movie_policy.parameters())), lr=LR_model, weight_decay=0)
losses = {'train': [], 'test': []}
accuracies = {'train': [], 'test': []}
train_sample_loss = list()
train_sample_accuracy = list()
user_dims_record = list()
movie_dims_record = list()
# 下面是训练部分
print('\n******************************************Train******************************************\n')
# trained_num_col = 1 # 存放已训练数量的列标号
# loss_col = 2 # 存放当前损失度的列标号
# accuracy_col = 3 # 存放当前训练精确度的列标号
# row_num = 1 # 存放当前数据的行号,递增
#
# excel_name = "analyze/OEOPN_dim16.xlsx" # TODO Check
# sheet_name = "ml_latest_bin" # TODO Check ml_latest_multi ml_latest_bin
# excel = load_workbook(excel_name)
# sheet = excel[sheet_name]
for epoch_i in range(Epoch):
index = 0
while index < Len_Train_Features:
update_controller(index, train_features, train_target)
update_RS(index, train_features, Len_Train_Features, train_target, mode='train')
if len(losses['train']) % 10 == 0:
train_loss = sum(losses['train'][-10:]) / 10
train_accuracy = sum([item[0] / item[1] for item in accuracies['train'][-10:]]) / 10
print('Epoch = {:>3} Batch = {:>4}/{:>4} ({:.3f}%) train_loss = {:.3f} train_accuracy = {:.3f} total_time = {:.3f} min'.format(
epoch_i, index + Batch_Size, Len_Train_Features, 100 * (index + Batch_Size) / Len_Train_Features, train_loss,
train_accuracy, (time.time() - t0) / 60))
# sheet.cell(row=row_num, column=trained_num_col).value = (epoch_i * Len_Train_Features) + index + Batch_Size
# sheet.cell(row=row_num, column=loss_col).value = train_loss
# sheet.cell(row=row_num, column=accuracy_col).value = train_accuracy
# row_num = row_num + 1
index += Batch_Size
# save the excel
# excel.close()
# excel.save(excel_name)
#############################test#############################
print('\n******************************************Test******************************************\n')
t0 = time.time()
index = 0
# Len_Test_Features = 20000
times = 0
test_accuracy_sum = 0
while index < Len_Test_Features:
update_controller(index, test_features, test_target)
update_RS(index, test_features, Len_Test_Features, test_target, mode='test')
# if len(losses['test']) % 10 == 0:
# print(
# 'Test Batch = {:>4}/{:>4} ({:.3f}%) test_loss = {:.3f} test_accuracy = {:.3f} whole_time = {:.3f} min'.format(
# index + Batch_Size, Len_Test_Features, 100 * (index + Batch_Size) / Len_Test_Features,
# sum(losses['test'][-10:]) / 10,
# sum([item[0] / item[1] for item in accuracies['test'][-10:]]) / 10, (time.time() - t0) / 60))
if len(losses['test']) % 10 == 0:
test_accuracy = sum([item[0] / item[1] for item in accuracies['test'][-10:]]) / 10
times += 1
test_accuracy_sum += test_accuracy
print(
'Test Batch = {:>4}/{:>4} ({:.3f}%) test_loss = {:.3f} test_accuracy = {:.3f} avg_test_acc = {:.3f} whole_time = {:.3f} min'.format(
index + Batch_Size, Len_Test_Features, 100 * (index + Batch_Size) / Len_Test_Features,
sum(losses['test'][-10:]) / 10, test_accuracy, test_accuracy_sum / times, (time.time() - t0) / 60))
index += Batch_Size
correct_num = sum([item[0] for item in accuracies['test']])
test_num = sum([item[1] for item in accuracies['test']])
print('Test Loss: {:.4f}'.format(sum(losses['test']) / test_num))
print('Test Correct Num: {}'.format(correct_num))
print('Test Num: {}'.format(test_num))
print('Test Accuracy: {:.4f}'.format(correct_num / test_num))
print("%s %s Batch_size=%d cross_emb_size=%d Epoch=%d PN_learning_rate=%.4f RS_learning_rate=%.3f Accuracy=%f Loss=%f" %
(DATA_SET, Loss_Type, Batch_Size, cross_emb_size, Epoch, LR_darts, LR_model, (correct_num / test_num), (sum(losses['test']) / test_num)))
# Save model
save_model_name = './save_model/DyEmbNum{}_Policy_Type{}_LossType{}_Reward_Base{}_last{}_TestAcc{:.4f}'.format(
Dy_Emb_Num, Policy_Type, Loss_Type, Reward_Base, last_num,
correct_num / test_num)
torch.save(model.state_dict(), save_model_name + '.pt')
with open(save_model_name + '_weights.pkl', 'wb') as f:
if Dy_Emb_Num == 1:
pk.dump((final_user_pop, user_weights), f)
elif Dy_Emb_Num == 2:
pk.dump(((final_user_pop, user_weights), (final_movie_pop, movie_weights)), f)
print('Model saved to ' + save_model_name + '.pt')
print('Weights saved to ' + save_model_name + '_weights.pkl')
feature_data = pd.concat([train_feature_data, test_feature_data])
print("feature_data: ", feature_data.shape[0], feature_data.shape[1])
feature_data['user_dims'] = pd.DataFrame(
[[i] for i in user_dims_record])
if Dy_Emb_Num == 2:
feature_data['movie_dims'] = pd.DataFrame([[i] for i in movie_dims_record])
feature_data['{}{}_loss_{}'.format(Train_Method[0], Policy_Type, Emb_Size)] = pd.DataFrame(
[[i] for i in train_sample_loss])
feature_data['{}{}_acc_{}'.format(Train_Method[0], Policy_Type, Emb_Size)] = pd.DataFrame(
[[i] for i in train_sample_accuracy])
print('\n****************************************************************************************\n')
if Model_Gpu:
print('\n++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++\n')
print('Memory: ', torch.cuda.memory_allocated(0) / 1024 ** 3, 'GB', torch.cuda.memory_cached(0) / 1024 ** 3, 'GB')
# torch.cuda.empty_cache()
print('Memory: ', torch.cuda.memory_allocated(0) / 1024 ** 3, 'GB', torch.cuda.memory_cached(0) / 1024 ** 3, 'GB')
print('\n++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++\n')
Parameter_Name = 'DataSet{}_ValType{}_Policy{}_DyEmbNum{}_LossType{}_RewardBase{}'.format(
DATA_SET,
Val_Type if Train_Method == 'AutoML' else 'None',
Policy_Type,
Dy_Emb_Num,
Loss_Type,
Reward_Base)
feature_data.to_csv('./results/feature_data_with_loss_{}.csv'.format(Parameter_Name), index=None)
if Dy_Emb_Num == 1:
result_user = []
for i in range(1, 100):
feature_data1 = feature_data[feature_data['user_frequency'] == i]
result_user.append(list(feature_data1.mean(axis=0)) + [len(feature_data1)])
Head = list(feature_data.columns) + ['count']
pd.DataFrame(result_user).to_csv('./results/result_{}_user.csv'.format(Parameter_Name), index=None,
header=Head)
elif Dy_Emb_Num == 2:
result_user, result_movie = [], []
for i in range(1, 100):
feature_data1 = feature_data[feature_data['user_frequency'] == i]
result_user.append(list(feature_data1.mean(axis=0)) + [len(feature_data1)])
Head = list(feature_data.columns) + ['count']
pd.DataFrame(result_user).to_csv('./results/result_{}_user.csv'.format(Parameter_Name), index=None,
header=Head)
for i in range(1, 100):
feature_data1 = feature_data[feature_data['movie_frequency'] == i]
result_movie.append(list(feature_data1.mean(axis=0)) + [len(feature_data1)])
Head = list(feature_data.columns) + ['count']
pd.DataFrame(result_movie).to_csv('./results/result_{}_movie.csv'.format(Parameter_Name), index=None,
header=Head)
result = []
for i in range(int(Train_Size/1000000)):
feature_data1 = feature_data[i*1000000:(i+1)*1000000]
result.append(list(feature_data1.mean(axis=0)) + [len(feature_data1)])
Head = list(feature_data.columns) + ['count']
pd.DataFrame(result).to_csv('./results/result_{}_trendency.csv'.format(Parameter_Name), index=None, header=Head)
print('\n****************************************************************************************\n')
print('os.getpid(): ', os.getpid())
if torch.cuda.is_available():
print('torch.cuda: ', torch.cuda.is_available(), torch.cuda.current_device(), torch.cuda.device_count(), torch.cuda.get_device_name(0), torch.cuda.device(torch.cuda.current_device()))
else:
print('GPU is not available!!!')
print('Train_Size: ', Train_Size)
print('Test_Size: ', Test_Size)
print('Emb_Size: ', Emb_Size)
print('Dy_Emb_Num: ', Dy_Emb_Num)
print('Loss_Type: ', Loss_Type)
print('Train_Method: ', Train_Method)
print('Policy_Type: ', Types[Policy_Type])
print('Val_Type: ', Val_Type)
print('Beta_Beta: ', Beta_Beta)
print('H_alpha: ', H_alpha)
print('LR_model: ', LR_model)
print('LR_darts: ', LR_darts)
print('\n****************************************************************************************\n')
print('{} done'.format(Train_Method))