-
Notifications
You must be signed in to change notification settings - Fork 4
/
statement.go
465 lines (449 loc) · 16.8 KB
/
statement.go
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
package wann
import (
"errors"
"fmt"
"io/ioutil"
"os"
"os/exec"
"strconv"
"strings"
"github.com/dave/jennifer/jen"
)
var errIgnore = errors.New("ignore this node")
// SetInputValues will assign the given values to the network input nodes
func (net Network) SetInputValues(inputValues []float64) {
if len(net.InputNodes) > len(inputValues) {
fmt.Println("warning: more input nodes than input values")
} else if len(net.InputNodes) < len(inputValues) {
fmt.Println("warning: fewer input nodes than input values")
}
// Assign the values
for i, ni := range net.InputNodes {
if i < len(inputValues) {
v := inputValues[i]
net.AllNodes[ni].Value = &v
} else {
break
}
}
}
// NetworkStatementWithInputValues will print out a trace of visiting all nodes from output and to the left
func (neuron Neuron) NetworkStatementWithInputValues(visited *[]NeuronIndex) (*jen.Statement, error) {
// First guard against re-visits
if neuron.neuronIndex.In(visited) {
return jen.Empty(), errors.New("already visited: " + strconv.Itoa(int(neuron.neuronIndex)))
}
*visited = append(*visited, neuron.neuronIndex)
// Toggle bits in neuronType to signify what type of neuron it is
neuronType := 0
if neuron.IsOutput() {
neuronType ^= 1
}
if neuron.IsInput() {
neuronType ^= 2
}
// Switch on the neuronType bits
switch neuronType {
case 0: // not network output and not network input, may have input nodes
//fmt.Println("* Middle node")
switch len(neuron.InputNodes) {
case 0:
//fmt.Println("No input nodes to this node, and not a network input node.")
return jen.Empty(), errIgnore
case 1:
//fmt.Println("One input node to this node.")
inputNode := neuron.Net.AllNodes[neuron.InputNodes[0]]
statement, err := inputNode.NetworkStatementWithInputValues(visited)
if err != nil {
return jen.Empty(), err
}
//fmt.Println("** Statement: ", render(statement))
return statement, nil
default:
var inputStatements []*jen.Statement
for _, inputNodeIndex := range neuron.InputNodes {
statement, err := neuron.Net.AllNodes[inputNodeIndex].NetworkStatementWithInputValues(visited)
if err != nil {
continue
}
inputStatements = append(inputStatements, statement)
}
activationStatement := ActivationStatement(neuron.ActivationFunction, neuron.Net.Weight, inputStatements)
//fmt.Printf("** Statements to combine with %s:\n", neuron.ActivationFunction.Name())
//for _, inputStatement := range inputStatements {
// fmt.Printf("\t%s\n", inputStatement)
//}
//fmt.Println("** Activation statement: ", render(activationStatement))
return activationStatement, nil
}
case 1: // network output and not network input, may have input nodes
//fmt.Println("* Network output node and not network input node")
switch len(neuron.InputNodes) {
case 0:
//fmt.Println("No input nodes to this node, and not a network input node.")
return jen.Empty(), errIgnore
case 1:
//fmt.Println("One input node to this node.")
inputNode := neuron.Net.AllNodes[neuron.InputNodes[0]]
statement, err := inputNode.NetworkStatementWithInputValues(visited)
if err != nil {
return jen.Empty(), err
}
//fmt.Println("** Statement: ", render(statement))
return statement, nil
default:
var inputStatements []*jen.Statement
for _, inputNodeIndex := range neuron.InputNodes {
statement, err := neuron.Net.AllNodes[inputNodeIndex].NetworkStatementWithInputValues(visited)
if err != nil {
continue
}
inputStatements = append(inputStatements, statement)
}
activationStatement := ActivationStatement(neuron.ActivationFunction, neuron.Net.Weight, inputStatements)
//fmt.Printf("** Statements to combine with %s:\n", neuron.ActivationFunction.Name())
//for _, inputStatement := range inputStatements {
// fmt.Printf("\t%s\n", inputStatement)
//}
//fmt.Println("** Activation statement: ", render(activationStatement))
return activationStatement, nil
}
case 2: // not network output, but network input, may not have input nodes
//fmt.Println("* Network input node and not network output node")
switch len(neuron.InputNodes) {
case 0:
if neuron.Value == nil {
panic("implementation error: network input Value is nil")
}
// No inputs to this network input node, return the Value
//fmt.Println("literal", *neuron.Value, "activation function", neuron.ActivationFunction.Name())
inner := jen.Lit(*neuron.Value)
return neuron.ActivationFunction.Statement(inner), nil
case 1:
//fmt.Println("One input node to this node.")
inputNode := neuron.Net.AllNodes[neuron.InputNodes[0]]
statement, err := inputNode.NetworkStatementWithInputValues(visited)
if err != nil {
return jen.Empty(), err
}
//fmt.Println("** Statement: ", render(statement))
return statement, nil
default:
var inputStatements []*jen.Statement
for _, inputNodeIndex := range neuron.InputNodes {
statement, err := neuron.Net.AllNodes[inputNodeIndex].NetworkStatementWithInputValues(visited)
if err != nil {
continue
}
inputStatements = append(inputStatements, statement)
}
activationStatement := ActivationStatement(neuron.ActivationFunction, neuron.Net.Weight, inputStatements)
//fmt.Printf("** Statements to combine with %s:\n", neuron.ActivationFunction.Name())
//for _, inputStatement := range inputStatements {
// fmt.Printf("\t%s\n", inputStatement)
//}
//fmt.Println("** Activation statement: ", render(activationStatement))
return activationStatement, nil
}
case 3: // network output and network input, may have input nodes
//fmt.Println("* Network input and output node")
switch len(neuron.InputNodes) {
case 0:
if neuron.Value == nil {
panic("implementation error: network input Value is nil")
}
// No inputs to this network input node, return the Value
//fmt.Println("literal", *neuron.Value)
return jen.Lit(*neuron.Value), nil
case 1:
//fmt.Println("One input node to this node.")
inputNode := neuron.Net.AllNodes[neuron.InputNodes[0]]
statement, err := inputNode.NetworkStatementWithInputValues(visited)
if err != nil {
return jen.Empty(), err
}
//fmt.Println("** Statement: ", render(statement))
return statement, nil
default:
var inputStatements []*jen.Statement
for _, inputNodeIndex := range neuron.InputNodes {
statement, err := neuron.Net.AllNodes[inputNodeIndex].NetworkStatementWithInputValues(visited)
if err != nil {
continue
}
inputStatements = append(inputStatements, statement)
}
activationStatement := ActivationStatement(neuron.ActivationFunction, neuron.Net.Weight, inputStatements)
//fmt.Printf("** Statements to combine with %s:\n", neuron.ActivationFunction.Name())
//for _, inputStatement := range inputStatements {
// fmt.Printf("\t%s\n", inputStatement)
//}
//fmt.Println("** Activation statement: ", render(activationStatement))
return activationStatement, nil
}
}
panic("implementation error")
}
// StatementWithInputValues traces the entire network
func (net *Network) StatementWithInputValues() (*jen.Statement, error) {
//fmt.Println("=== Trace ===")
visited := make([]NeuronIndex, 0)
outputNode := net.AllNodes[net.OutputNode]
statement, err := outputNode.NetworkStatementWithInputValues(&visited)
if err != nil {
return jen.Empty(), err
}
return statement, nil
}
// NetworkStatementWithInputDataVariables will print out a trace of visiting all nodes from output and to the left,
// but with the given slice of statements instead of using the input values
func (neuron Neuron) NetworkStatementWithInputDataVariables(visited *[]NeuronIndex) (*jen.Statement, error) {
// First guard against re-visits
if neuron.neuronIndex.In(visited) {
return jen.Empty(), errors.New("already visited: " + strconv.Itoa(int(neuron.neuronIndex)))
}
*visited = append(*visited, neuron.neuronIndex)
// Toggle bits in neuronType to signify what type of neuron it is
neuronType := 0
if neuron.IsOutput() {
neuronType ^= 1
}
if neuron.IsInput() {
neuronType ^= 2
}
// Switch on the neuronType bits
switch neuronType {
case 0: // not network output and not network input, may have input nodes
//fmt.Println("* Middle node")
switch len(neuron.InputNodes) {
case 0:
//fmt.Println("No input nodes to this node, and not a network input node.")
return jen.Empty(), errIgnore
case 1:
//fmt.Println("One input node to this node.")
inputNode := neuron.Net.AllNodes[neuron.InputNodes[0]]
statement, err := inputNode.NetworkStatementWithInputDataVariables(visited)
if err != nil {
return jen.Empty(), err
}
//fmt.Println("** Statement: ", render(statement))
return statement, nil
default:
var inputStatements []*jen.Statement
for _, inputNodeIndex := range neuron.InputNodes {
statement, err := neuron.Net.AllNodes[inputNodeIndex].NetworkStatementWithInputDataVariables(visited)
if err != nil {
continue
}
inputStatements = append(inputStatements, statement)
}
activationStatement := ActivationStatement(neuron.ActivationFunction, neuron.Net.Weight, inputStatements)
//fmt.Printf("** Statements to combine with %s:\n", neuron.ActivationFunction.Name())
//for _, inputStatement := range inputStatements {
// fmt.Printf("\t%#v\n", inputStatement)
//}
//fmt.Println("** Activation statement: ", render(activationStatement))
return activationStatement, nil
}
case 1: // network output and not network input, may have input nodes
//fmt.Println("* Network output node and not network input node")
switch len(neuron.InputNodes) {
case 0:
//fmt.Println("No input nodes to this node, and not a network input node.")
return jen.Empty(), errIgnore
case 1:
//fmt.Println("One input node to this node.")
inputNode := neuron.Net.AllNodes[neuron.InputNodes[0]]
statement, err := inputNode.NetworkStatementWithInputDataVariables(visited)
if err != nil {
return jen.Empty(), err
}
//fmt.Println("** Statement: ", render(statement))
return statement, nil
default:
var inputStatements []*jen.Statement
for _, inputNodeIndex := range neuron.InputNodes {
statement, err := neuron.Net.AllNodes[inputNodeIndex].NetworkStatementWithInputDataVariables(visited)
if err != nil {
continue
}
inputStatements = append(inputStatements, statement)
}
activationStatement := ActivationStatement(neuron.ActivationFunction, neuron.Net.Weight, inputStatements)
//fmt.Printf("** Statements to combine with %s:\n", neuron.ActivationFunction.Name())
//for _, inputStatement := range inputStatements {
// fmt.Printf("\t%s\n", inputStatement)
//}
//fmt.Println("** Activation statement: ", render(activationStatement))
return activationStatement, nil
}
case 2: // not network output, but network input, may not have input nodes
//fmt.Println("* Network input node and not network output node")
switch len(neuron.InputNodes) {
case 0:
inputStatement, err := neuron.InputStatement()
if err != nil {
panic("implementation error: " + err.Error())
}
// No inputs to this network input node, return the Value
//fmt.Println("activation function", neuron.ActivationFunction.Name())
inner := inputStatement
return neuron.ActivationFunction.Statement(inner), nil
case 1:
//fmt.Println("One input node to this node.")
inputNode := neuron.Net.AllNodes[neuron.InputNodes[0]]
statement, err := inputNode.NetworkStatementWithInputDataVariables(visited)
if err != nil {
return jen.Empty(), err
}
//fmt.Println("** Statement: ", render(statement))
return statement, nil
default:
var inputStatements []*jen.Statement
for _, inputNodeIndex := range neuron.InputNodes {
statement, err := neuron.Net.AllNodes[inputNodeIndex].NetworkStatementWithInputDataVariables(visited)
if err != nil {
continue
}
inputStatements = append(inputStatements, statement)
}
activationStatement := ActivationStatement(neuron.ActivationFunction, neuron.Net.Weight, inputStatements)
//fmt.Printf("** Statements to combine with %s:\n", neuron.ActivationFunction.Name())
//for _, inputStatement := range inputStatements {
// fmt.Printf("\t%s\n", inputStatement)
//}
//fmt.Println("** Activation statement: ", render(activationStatement))
return activationStatement, nil
}
case 3: // network output and network input, may have input nodes
//fmt.Println("* Network input and output node")
switch len(neuron.InputNodes) {
case 0:
inputStatement, err := neuron.InputStatement()
if err != nil {
panic("implementation error: " + err.Error())
}
// No inputs to this network input node, return the statement
inner := inputStatement
return inner, nil
case 1:
//fmt.Println("One input node to this node.")
inputNode := neuron.Net.AllNodes[neuron.InputNodes[0]]
statement, err := inputNode.NetworkStatementWithInputDataVariables(visited)
if err != nil {
return jen.Empty(), err
}
//fmt.Println("** Statement: ", render(statement))
return statement, nil
default:
var inputStatements []*jen.Statement
for _, inputNodeIndex := range neuron.InputNodes {
statement, err := neuron.Net.AllNodes[inputNodeIndex].NetworkStatementWithInputDataVariables(visited)
if err != nil {
continue
}
inputStatements = append(inputStatements, statement)
}
activationStatement := ActivationStatement(neuron.ActivationFunction, neuron.Net.Weight, inputStatements)
//fmt.Printf("** Statements to combine with %s:\n", neuron.ActivationFunction.Name())
//for _, inputStatement := range inputStatements {
// fmt.Printf("\t%s\n", inputStatement)
//}
//fmt.Println("** Activation statement: ", render(activationStatement))
return activationStatement, nil
}
}
panic("implementation error")
}
// StatementWithInputDataVariables traces the entire network, using statements for the input numbers
func (net *Network) StatementWithInputDataVariables() (*jen.Statement, error) {
//fmt.Println("=== Trace2 ===")
visited := make([]NeuronIndex, 0)
outputNode := net.AllNodes[net.OutputNode]
statement, err := outputNode.NetworkStatementWithInputDataVariables(&visited)
if err != nil {
return jen.Empty(), err
}
return statement, nil
}
// Render renders a *jen.Statement to a string, if possible
// if there is an error about an extra ")", then that's because anonymous functions are not supported by jen
// Do not Render until statements could be placed at the top-level in a Go program.
func Render(inner *jen.Statement) string {
return inner.GoString()
}
// OutputNodeStatementX returns a statement for the output node, using "x" for the variable
func (net *Network) OutputNodeStatementX(functionName string) string {
inner := net.AllNodes[net.OutputNode].ActivationFunction.Statement(jen.Id("x"))
f := jen.Id(functionName).Op(":=").Add(inner)
return Render(f)
}
// RunStatementX will run the given statement by wrapping it in a program and using "go run"
func RunStatementX(statement *jen.Statement, x float64) (float64, error) {
file, err := ioutil.TempFile("", "af_*.go")
if err != nil {
return 0.0, err
}
filename := file.Name()
defer os.Remove(filename)
// Build the contents of the source file using jennifer
f := jen.NewFile("main")
f.Func().Id("main").Params().Block(
jen.Id("x").Op(":=").Lit(x),
jen.Qual("fmt", "Println").Call(statement),
)
// Save the file
if ioutil.WriteFile(filename, []byte(f.GoString()), 0664) != nil {
return 0.0, err
}
// Run the file
cmd := exec.Command("go", "run", filename)
out, err := cmd.CombinedOutput()
if err != nil {
return 0.0, err
}
// Return the outputted float string as a float64
resultString := strings.TrimSpace(string(out))
resultFloat, err := strconv.ParseFloat(resultString, 64)
if err != nil {
return 0.0, err
}
return resultFloat, nil
}
// RunStatementInputData will run the given statement by wrapping it in a program and using "go run"
func RunStatementInputData(statement *jen.Statement, inputData []float64) (float64, error) {
file, err := ioutil.TempFile("", "af_*.go")
if err != nil {
return 0.0, err
}
filename := file.Name()
defer os.Remove(filename)
// Build the contents of the source file using jennifer
f := jen.NewFile("main")
f.Func().Id("main").Params().Block(
// Build a statement that declares and initializes "inputData" based on the contents of inputData
jen.Id("inputData").Op(":=").Index().Float64().ValuesFunc(func(g *jen.Group) {
for i := 0; i < len(inputData); i++ {
g.Lit(inputData[i])
}
}),
jen.Qual("fmt", "Println").Call(statement),
)
// Save the file
if ioutil.WriteFile(filename, []byte(f.GoString()), 0664) != nil {
return 0.0, err
}
// Run the file
cmd := exec.Command("go", "run", filename)
out, err := cmd.CombinedOutput()
if err != nil {
return 0.0, err
}
// Return the outputted float string as a float64
resultString := strings.TrimSpace(string(out))
resultFloat, err := strconv.ParseFloat(resultString, 64)
if err != nil {
return 0.0, err
}
return resultFloat, nil
}