forked from ZiweiWangTHU/Quantformer
-
Notifications
You must be signed in to change notification settings - Fork 0
/
engine.py
137 lines (110 loc) · 5.06 KB
/
engine.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
# Copyright (c) 2015-present, Facebook, Inc.
# All rights reserved.
"""
Train and eval functions used in main.py
"""
import math
import sys
from typing import Iterable, Optional
import torch
from timm.data import Mixup
from timm.utils import accuracy, ModelEma
from losses import DistillationLoss
from custom_timm.loss import SoftTargetCrossEntropy
from custom_timm.models.swin_transformer import QWindowAttention, WindowAttention
import torch.nn.functional as F
import utils
from lib.utils.quantize_utils import QLinear
def cal_entropy(attn):
return -1 * torch.sum((attn * torch.log(attn)), dim=-1).mean()
def cal_l2loss(x, y):
return (F.normalize(x.view(x.size(0), -1)) - F.normalize(y.view(y.size(0), -1))).pow(2).mean()
def train_one_epoch(args,
model: torch.nn.Module, fpmodel: torch.nn.Module, criterion: DistillationLoss,
data_loader: Iterable, optimizer: torch.optim.Optimizer, arch_optimizer: torch.optim.Optimizer,
device: torch.device, epoch: int, loss_scaler, max_norm: float = 0,
model_ema: Optional[ModelEma] = None, mixup_fn: Optional[Mixup] = None,
aux_weight: float = 0.5, dm_weight: float = 0.025,
pnorm: int = 3, set_training_mode=True):
model.train(set_training_mode)
metric_logger = utils.MetricLogger(delimiter=" ")
metric_logger.add_meter('lr', utils.SmoothedValue(window_size=1, fmt='{value:.6f}'))
header = 'Epoch: [{}]'.format(epoch)
print_freq = 100
for samples, targets in metric_logger.log_every(data_loader, print_freq, header):
samples = samples.to(device, non_blocking=True)
targets = targets.to(device, non_blocking=True)
if mixup_fn is not None:
samples, targets = mixup_fn(samples, targets)
aux_loss = 0
dm_loss = 0
with torch.cuda.amp.autocast():
outputs = model(samples)
loss = criterion(samples, outputs, targets)
if args.group_num > 1:
fpmodel.eval()
with torch.cuda.amp.autocast():
fpoutputs = fpmodel(samples)
attn = []
for i, layer in enumerate(model.modules()):
if type(layer) in [QWindowAttention]:
attn.append(layer.attent)
j = 0
for i, layer in enumerate(fpmodel.modules()):
if type(layer) in [WindowAttention]:
fpattn = layer.attent.detach()
fpattn = torch.pow(fpattn, pnorm)
aux_loss += cal_l2loss(fpattn, attn[j])
j = j + 1
if args.search == True:
for i, layer in enumerate(model.modules()):
if type(layer) in [QLinear]:
alpha = layer.sw
group_n, dim = alpha.shape
dm_loss_t = 0
for k in range(group_n):
dm_loss_t += cal_entropy(alpha[k])
dm_loss += dm_loss_t / (group_n * dim)
loss = loss + dm_weight * dm_loss + aux_weight * aux_loss
loss_value = loss.item()
if not math.isfinite(loss_value):
print("Loss is {}, stopping training".format(loss_value))
sys.exit(1)
optimizer.zero_grad()
arch_optimizer.zero_grad()
loss.backward()
optimizer.step()
arch_optimizer.step()
if model_ema is not None:
model_ema.update(model)
metric_logger.update(loss=loss_value)
metric_logger.update(lr=optimizer.param_groups[0]["lr"])
# gather the stats from all processes
metric_logger.synchronize_between_processes()
print("Averaged stats:", metric_logger)
return {k: meter.global_avg for k, meter in metric_logger.meters.items()}
@torch.no_grad()
def evaluate(data_loader, model, device):
criterion = torch.nn.CrossEntropyLoss()
# criterion = SoftTargetCrossEntropy()
metric_logger = utils.MetricLogger(delimiter=" ")
header = 'Test:'
# switch to evaluation mode
model.eval()
for images, target in metric_logger.log_every(data_loader, 10, header):
images = images.to(device, non_blocking=True)
target = target.to(device, non_blocking=True)
# compute output
with torch.cuda.amp.autocast():
output = model(images)
loss = criterion(output, target)
acc1, acc5 = accuracy(output, target, topk=(1, 5))
batch_size = images.shape[0]
metric_logger.update(loss=loss.item())
metric_logger.meters['acc1'].update(acc1.item(), n=batch_size)
metric_logger.meters['acc5'].update(acc5.item(), n=batch_size)
# gather the stats from all processes
metric_logger.synchronize_between_processes()
print('* Acc@1 {top1.global_avg:.3f} Acc@5 {top5.global_avg:.3f} loss {losses.global_avg:.3f}'
.format(top1=metric_logger.acc1, top5=metric_logger.acc5, losses=metric_logger.loss))
return {k: meter.global_avg for k, meter in metric_logger.meters.items()}