We read every piece of feedback, and take your input very seriously.
To see all available qualifiers, see our documentation.
Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.
By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.
Already on GitHub? Sign in to your account
本篇是对HTTP不同版本主要特性的一个概述和总结。
HTTP
早先1.0的HTTP版本,是一种无状态、无连接的应用层协议。
1.0
HTTP1.0规定浏览器和服务器保持短暂的连接,浏览器的每次请求都需要与服务器建立一个TCP连接,服务器处理完成后立即断开TCP连接(无连接),服务器不跟踪每个客户端也不记录过去的请求(无状态)。
HTTP1.0
TCP
这种无状态性可以借助cookie/session机制来做身份认证和状态记录。而下面两个问题就比较麻烦了。
cookie/session
首先,无连接的特性导致最大的性能缺陷就是无法复用连接。每次发送请求的时候,都需要进行一次TCP的连接,而TCP的连接释放过程又是比较费事的。这种无连接的特性会使得网络的利用率非常低。
其次就是队头阻塞(head of line blocking)。由于HTTP1.0规定下一个请求必须在前一个请求响应到达之前才能发送。假设前一个请求响应一直不到达,那么下一个请求就不发送,同样的后面的请求也给阻塞了。
head of line blocking
为了解决这些问题,HTTP1.1出现了。
HTTP1.1
对于HTTP1.1,不仅继承了HTTP1.0简单的特点,还克服了诸多HTTP1.0性能上的问题。
首先是长连接,HTTP1.1增加了一个Connection字段,通过设置Keep-Alive可以保持HTTP连接不断开,避免了每次客户端与服务器请求都要重复建立释放建立TCP连接,提高了网络的利用率。如果客户端想关闭HTTP连接,可以在请求头中携带Connection: false来告知服务器关闭请求。
Connection
Keep-Alive
Connection: false
其次,是HTTP1.1支持请求管道化(pipelining)。基于HTTP1.1的长连接,使得请求管线化成为可能。管线化使得请求能够“并行”传输。举个例子来说,假如响应的主体是一个html页面,页面中包含了很多img,这个时候keep-alive就起了很大的作用,能够进行“并行”发送多个请求。(注意这里的“并行”并不是真正意义上的并行传输,具体解释如下。)
pipelining
html
img
keep-alive
需要注意的是,服务器必须按照客户端请求的先后顺序依次回送相应的结果,以保证客户端能够区分出每次请求的响应内容。
也就是说,HTTP管道化可以让我们把先进先出队列从客户端(请求队列)迁移到服务端(响应队列)。
如图所示,客户端同时发了两个请求分别来获取html和css,假如说服务器的css资源先准备就绪,服务器也会先发送html再发送css。
css
换句话来说,只有等到html响应的资源完全传输完毕后,css响应的资源才能开始传输。也就是说,不允许同时存在两个并行的响应。
可见,HTTP1.1还是无法解决队头阻塞(head of line blocking)的问题。同时“管道化”技术存在各种各样的问题,所以很多浏览器要么根本不支持它,要么就直接默认关闭,并且开启的条件很苛刻...而且实际上好像并没有什么用处。
那我们在谷歌控制台看到的并行请求又是怎么一回事呢?
如图所示,绿色部分代表请求发起到服务器响应的一个等待时间,而蓝色部分表示资源的下载时间。按照理论来说,HTTP响应理应当是前一个响应的资源下载完了,下一个响应的资源才能开始下载。而这里却出现了响应资源下载并行的情况。这又是为什么呢?
其实,虽然HTTP1.1支持管道化,但是服务器也必须进行逐个响应的送回,这个是很大的一个缺陷。实际上,现阶段的浏览器厂商采取了另外一种做法,它允许我们打开多个TCP的会话。也就是说,上图我们看到的并行,其实是不同的TCP连接上的HTTP请求和响应。这也就是我们所熟悉的浏览器对同域下并行加载6~8个资源的限制。而这,才是真正的并行!
此外,HTTP1.1还加入了缓存处理(强缓存和协商缓存[传送门])新的字段如cache-control,支持断点传输,以及增加了Host字段(使得一个服务器能够用来创建多个Web站点)。
cache-control
HTTP2.0的新特性大致如下:
HTTP2.0
二进制分帧
HTTP2.0通过在应用层和传输层之间增加一个二进制分帧层,突破了HTTP1.1的性能限制、改进传输性能。
可见,虽然HTTP2.0的协议和HTTP1.x协议之间的规范完全不同了,但是实际上HTTP2.0并没有改变HTTP1.x的语义。 简单来说,HTTP2.0只是把原来HTTP1.x的header和body部分用frame重新封装了一层而已。
HTTP1.x
header
body
frame
多路复用(连接共享)
下面是几个概念:
stream
stream id
从图中可见,所有的HTTP2.0通信都在一个TCP连接上完成,这个连接可以承载任意数量的双向数据流。
每个数据流以消息的形式发送,而消息由一或多个帧组成。这些帧可以乱序发送,然后再根据每个帧头部的流标识符(stream id)重新组装。
举个例子,每个请求是一个数据流,数据流以消息的方式发送,而消息又分为多个帧,帧头部记录着stream id用来标识所属的数据流,不同属的帧可以在连接中随机混杂在一起。接收方可以根据stream id将帧再归属到各自不同的请求当中去。
另外,多路复用(连接共享)可能会导致关键请求被阻塞。HTTP2.0里每个数据流都可以设置优先级和依赖,优先级高的数据流会被服务器优先处理和返回给客户端,数据流还可以依赖其他的子数据流。
可见,HTTP2.0实现了真正的并行传输,它能够在一个TCP上进行任意数量HTTP请求。而这个强大的功能则是基于“二进制分帧”的特性。
头部压缩
在HTTP1.x中,头部元数据都是以纯文本的形式发送的,通常会给每个请求增加500~800字节的负荷。
比如说cookie,默认情况下,浏览器会在每次请求的时候,把cookie附在header上面发送给服务器。(由于cookie比较大且每次都重复发送,一般不存储信息,只是用来做状态记录和身份认证)
cookie
HTTP2.0使用encoder来减少需要传输的header大小,通讯双方各自cache一份header fields表,既避免了重复header的传输,又减小了需要传输的大小。高效的压缩算法可以很大的压缩header,减少发送包的数量从而降低延迟。
encoder
cache
header fields
服务器推送
服务器除了对最初请求的响应外,服务器还可以额外的向客户端推送资源,而无需客户端明确的请求。
首先,答案是“没有必要”。之所以没有必要,是因为这跟HTTP2.0的头部压缩有很大的关系。
在头部压缩技术中,客户端和服务器均会维护两份相同的静态字典和动态字典。
在静态字典中,包含了常见的头部名称以及头部名称与值的组合。静态字典在首次请求时就可以使用。那么现在头部的字段就可以被简写成静态字典中相应字段对应的index。
index
而动态字典跟连接的上下文相关,每个HTTP/2连接维护的动态字典是不尽相同的。动态字典可以在连接中不听的进行更新。
HTTP/2
也就是说,原本完整的HTTP报文头部的键值对或字段,由于字典的存在,现在可以转换成索引index,在相应的端再进行查找还原,也就起到了压缩的作用。
所以,同一个连接上产生的请求和响应越多,动态字典累积得越全,头部压缩的效果也就越好,所以针对HTTP/2网站,最佳实践是不要合并资源。
另外,HTTP2.0多路复用使得请求可以并行传输,而HTTP1.1合并请求的一个原因也是为了防止过多的HTTP请求带来的阻塞问题。而现在HTTP2.0已经能够并行传输了,所以合并请求也就没有必要了。
Host
参考: https://www.zhihu.com/question/34074946 https://segmentfault.com/q/1010000005167289 http://imweb.io/topic/554c5879718ba1240cc1dd8a http://web.jobbole.com/85635/
The text was updated successfully, but these errors were encountered:
No branches or pull requests
HTTP1.0
早先
1.0
的HTTP
版本,是一种无状态、无连接的应用层协议。HTTP1.0
规定浏览器和服务器保持短暂的连接,浏览器的每次请求都需要与服务器建立一个TCP
连接,服务器处理完成后立即断开TCP
连接(无连接),服务器不跟踪每个客户端也不记录过去的请求(无状态)。这种无状态性可以借助
cookie/session
机制来做身份认证和状态记录。而下面两个问题就比较麻烦了。首先,无连接的特性导致最大的性能缺陷就是无法复用连接。每次发送请求的时候,都需要进行一次
TCP
的连接,而TCP
的连接释放过程又是比较费事的。这种无连接的特性会使得网络的利用率非常低。其次就是队头阻塞(
head of line blocking
)。由于HTTP1.0
规定下一个请求必须在前一个请求响应到达之前才能发送。假设前一个请求响应一直不到达,那么下一个请求就不发送,同样的后面的请求也给阻塞了。为了解决这些问题,
HTTP1.1
出现了。HTTP1.1
对于
HTTP1.1
,不仅继承了HTTP1.0
简单的特点,还克服了诸多HTTP1.0
性能上的问题。首先是长连接,
HTTP1.1
增加了一个Connection
字段,通过设置Keep-Alive
可以保持HTTP
连接不断开,避免了每次客户端与服务器请求都要重复建立释放建立TCP
连接,提高了网络的利用率。如果客户端想关闭HTTP
连接,可以在请求头中携带Connection: false
来告知服务器关闭请求。其次,是
HTTP1.1
支持请求管道化(pipelining
)。基于HTTP1.1
的长连接,使得请求管线化成为可能。管线化使得请求能够“并行”传输。举个例子来说,假如响应的主体是一个html
页面,页面中包含了很多img
,这个时候keep-alive
就起了很大的作用,能够进行“并行”发送多个请求。(注意这里的“并行”并不是真正意义上的并行传输,具体解释如下。)需要注意的是,服务器必须按照客户端请求的先后顺序依次回送相应的结果,以保证客户端能够区分出每次请求的响应内容。
也就是说,
HTTP
管道化可以让我们把先进先出队列从客户端(请求队列)迁移到服务端(响应队列)。如图所示,客户端同时发了两个请求分别来获取
html
和css
,假如说服务器的css
资源先准备就绪,服务器也会先发送html
再发送css
。换句话来说,只有等到
html
响应的资源完全传输完毕后,css
响应的资源才能开始传输。也就是说,不允许同时存在两个并行的响应。可见,
HTTP1.1
还是无法解决队头阻塞(head of line blocking
)的问题。同时“管道化”技术存在各种各样的问题,所以很多浏览器要么根本不支持它,要么就直接默认关闭,并且开启的条件很苛刻...而且实际上好像并没有什么用处。那我们在谷歌控制台看到的并行请求又是怎么一回事呢?
如图所示,绿色部分代表请求发起到服务器响应的一个等待时间,而蓝色部分表示资源的下载时间。按照理论来说,HTTP响应理应当是前一个响应的资源下载完了,下一个响应的资源才能开始下载。而这里却出现了响应资源下载并行的情况。这又是为什么呢?
其实,虽然
HTTP1.1
支持管道化,但是服务器也必须进行逐个响应的送回,这个是很大的一个缺陷。实际上,现阶段的浏览器厂商采取了另外一种做法,它允许我们打开多个TCP的会话。也就是说,上图我们看到的并行,其实是不同的TCP连接上的HTTP
请求和响应。这也就是我们所熟悉的浏览器对同域下并行加载6~8个资源的限制。而这,才是真正的并行!此外,
HTTP1.1
还加入了缓存处理(强缓存和协商缓存[传送门])新的字段如cache-control
,支持断点传输,以及增加了Host字段(使得一个服务器能够用来创建多个Web站点)。HTTP2.0
HTTP2.0
的新特性大致如下:二进制分帧
HTTP2.0
通过在应用层和传输层之间增加一个二进制分帧层,突破了HTTP1.1
的性能限制、改进传输性能。可见,虽然
HTTP2.0
的协议和HTTP1.x
协议之间的规范完全不同了,但是实际上HTTP2.0
并没有改变HTTP1.x
的语义。简单来说,
HTTP2.0
只是把原来HTTP1.x
的header
和body
部分用frame
重新封装了一层而已。多路复用(连接共享)
下面是几个概念:
stream
):已建立连接上的双向字节流。frame
):HTTP2.0
通信的最小单位,每个帧包含帧头部,至少也会标识出当前帧所属的流(stream id
)。从图中可见,所有的
HTTP2.0
通信都在一个TCP
连接上完成,这个连接可以承载任意数量的双向数据流。每个数据流以消息的形式发送,而消息由一或多个帧组成。这些帧可以乱序发送,然后再根据每个帧头部的流标识符(
stream id
)重新组装。举个例子,每个请求是一个数据流,数据流以消息的方式发送,而消息又分为多个帧,帧头部记录着
stream id
用来标识所属的数据流,不同属的帧可以在连接中随机混杂在一起。接收方可以根据stream id
将帧再归属到各自不同的请求当中去。另外,多路复用(连接共享)可能会导致关键请求被阻塞。
HTTP2.0
里每个数据流都可以设置优先级和依赖,优先级高的数据流会被服务器优先处理和返回给客户端,数据流还可以依赖其他的子数据流。可见,
HTTP2.0
实现了真正的并行传输,它能够在一个TCP
上进行任意数量HTTP
请求。而这个强大的功能则是基于“二进制分帧”的特性。头部压缩
在
HTTP1.x
中,头部元数据都是以纯文本的形式发送的,通常会给每个请求增加500~800字节的负荷。比如说
cookie
,默认情况下,浏览器会在每次请求的时候,把cookie
附在header
上面发送给服务器。(由于cookie
比较大且每次都重复发送,一般不存储信息,只是用来做状态记录和身份认证)HTTP2.0
使用encoder
来减少需要传输的header
大小,通讯双方各自cache
一份header fields
表,既避免了重复header
的传输,又减小了需要传输的大小。高效的压缩算法可以很大的压缩header
,减少发送包的数量从而降低延迟。服务器推送
服务器除了对最初请求的响应外,服务器还可以额外的向客户端推送资源,而无需客户端明确的请求。
HTTP1.1的合并请求是否适用于HTTP2.0
首先,答案是“没有必要”。之所以没有必要,是因为这跟
HTTP2.0
的头部压缩有很大的关系。在头部压缩技术中,客户端和服务器均会维护两份相同的静态字典和动态字典。
在静态字典中,包含了常见的头部名称以及头部名称与值的组合。静态字典在首次请求时就可以使用。那么现在头部的字段就可以被简写成静态字典中相应字段对应的
index
。而动态字典跟连接的上下文相关,每个
HTTP/2
连接维护的动态字典是不尽相同的。动态字典可以在连接中不听的进行更新。也就是说,原本完整的HTTP报文头部的键值对或字段,由于字典的存在,现在可以转换成索引
index
,在相应的端再进行查找还原,也就起到了压缩的作用。所以,同一个连接上产生的请求和响应越多,动态字典累积得越全,头部压缩的效果也就越好,所以针对
HTTP/2
网站,最佳实践是不要合并资源。另外,
HTTP2.0
多路复用使得请求可以并行传输,而HTTP1.1
合并请求的一个原因也是为了防止过多的HTTP
请求带来的阻塞问题。而现在HTTP2.0
已经能够并行传输了,所以合并请求也就没有必要了。总结
HTTP1.0
HTTP1.1
cache-control
)Host
字段、支持断点传输等HTTP2.0
参考:
https://www.zhihu.com/question/34074946
https://segmentfault.com/q/1010000005167289
http://imweb.io/topic/554c5879718ba1240cc1dd8a
http://web.jobbole.com/85635/
The text was updated successfully, but these errors were encountered: