-
Notifications
You must be signed in to change notification settings - Fork 16
/
Plot.py
201 lines (170 loc) · 6.16 KB
/
Plot.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
import matplotlib.pyplot as plt
from Config import *
from Util import load_config
'''experiment draw according to practice'''
def draw_pk():
plt.figure(figsize=(10, 10))
plt.suptitle('PK')
plt.xlabel('opponent')
plt.ylabel('times')
ax = plt.subplot(2, 2, 1)
ax.set_title('AlphaGobangZero VS RandomRolloutMCTS')
names = ['Win', 'Lose', 'Tie']
x = range(len(names))
y = [50, 0., 0.]
plt.bar(range(len(names)), y)
plt.xticks(x, names, rotation=45)
plt.yticks(range(0, 51, 10))
ax = plt.subplot(2, 2, 2)
ax.set_title('AlphaGobangZero VS Human')
names = ['Win', 'Lose', 'Tie']
x = range(len(names))
y = [19, 18, 13]
plt.bar(range(len(names)), y)
plt.xticks(x, names, rotation=45)
plt.yticks(range(0, 51, 10))
plt.show()
def draw_loss(filename=root_data_file + 'epochs-1500-resnet2.pkl'):
config = load_config(file_name=filename, only_load_param=False)
print (config.loss_records)
combined_loss_list = [loss['combined_loss']for loss in config.loss_records]
policy_loss_list = [loss['policy_loss'] for loss in config.loss_records]
value_loss_list = [loss['value_loss'] for loss in config.loss_records]
entropy_list = [loss['entropy'] for loss in config.loss_records]
plt.plot(combined_loss_list, color='blue', label='combined_loss')
plt.plot(policy_loss_list, color='red', label='policy_loss')
plt.plot(value_loss_list, color='green', label='value_loss')
plt.plot(entropy_list, color='black', label='entropy')
plt.legend()
plt.show()
def draw_epsilon_parameters():
'''data according to experiment'''
plt.figure(figsize=(10, 10))
plt.suptitle(r'$\epsilon$ experiment')
ax = plt.subplot(2, 3, 1)
ax.set_title(r'$\epsilon$=0 AlphaGobangZero')
names = [r'$\epsilon$=0.2', r'$\epsilon$=0.8', 'Random', 'Human']
x = range(len(names))
y = [0.167, 0.333, 0.70, 0.30]
plt.bar(range(len(names)), y)
plt.xticks(x, names, rotation=45)
plt.yticks(np.arange(0, 1.01, 0.1))
plt.xlabel('opponent')
plt.ylabel('win ratio')
ax = plt.subplot(2, 3, 2)
ax.set_title(r'$\epsilon$=0.2 AlphaGobangZero')
names = [r'$\epsilon$=0', r'$\epsilon$=0.8', 'Random', 'Human']
x = range(len(names))
y = [0.833, 0.80, 1.00, 0.50]
plt.bar(range(len(names)), y)
plt.xticks(x, names, rotation=45)
plt.yticks(np.arange(0, 1.01, 0.1))
plt.xlabel('opponent')
ax = plt.subplot(2, 3, 3)
ax.set_title(r'$\epsilon$=0.8 AlphaGobangZero')
names = [r'$\epsilon$=0', r'$\epsilon$=0.2', 'Random', 'Human']
x = range(len(names))
y = [0.667, 0.20, 0.90, 0.333]
plt.bar(range(len(names)), y)
plt.xticks(x, names, rotation=45)
plt.yticks(np.arange(0, 1.01, 0.1))
plt.xlabel('opponent')
plt.show()
def draw_n_parameters():
'''data according to experiment'''
plt.figure(figsize=(10, 10))
plt.suptitle('n experiment')
ax = plt.subplot(2, 3, 1)
ax.set_title('n=10 AlphaGobangZero')
names = ['n=400', 'n=1000', 'Random', 'Human']
x = range(len(names))
y = [0., 0., 0.6, 0.]
plt.bar(range(len(names)), y)
plt.xticks(x, names, rotation=45)
plt.yticks(np.arange(0, 1.01, 0.1))
plt.xlabel('opponent')
plt.ylabel('win ratio')
ax = plt.subplot(2, 3, 2)
ax.set_title('n=400 AlphaGobangZero')
names = ['n=10', 'n=1000', 'Random', 'Human']
x = range(len(names))
y = [1.0, 0.4, 1.00, 0.50]
plt.bar(range(len(names)), y)
plt.xticks(x, names, rotation=45)
plt.yticks(np.arange(0, 1.01, 0.1))
plt.xlabel('opponent')
ax = plt.subplot(2, 3, 3)
ax.set_title('n=1000 AlphaGobangZero')
names = ['n=10', 'n=400', 'Random', 'Human']
x = range(len(names))
y = [1.0, 0.6, 1.00, 0.60]
plt.bar(range(len(names)), y)
plt.xticks(x, names, rotation=45)
plt.yticks(np.arange(0, 1.01, 0.1))
plt.xlabel('opponent')
plt.show()
def draw_cpuct_parameters():
'''data according to experiment'''
plt.figure(figsize=(10, 10))
plt.suptitle(r'$c_{puct}$ experiment')
ax = plt.subplot(2, 3, 1)
ax.set_title(r'$c_{puct}$=1 AlphaGobangZero')
names = [r'$c_{puct}$=5', r'$c_{puct}$=20', 'Random', 'Human']
x = range(len(names))
y = [0.367, 0.40, 1.00, 0.20]
plt.bar(range(len(names)), y)
plt.xticks(x, names, rotation=45)
plt.yticks(np.arange(0, 1.01, 0.1))
plt.xlabel('opponent')
plt.ylabel('win ratio')
ax = plt.subplot(2, 3, 2)
ax.set_title(r'$c_{puct}$=5 AlphaGobangZero')
names = [r'$c_{puct}$=1', r'$c_{puct}$=20', 'Random', 'Human']
x = range(len(names))
y = [0.633, 0.80, 1.00, 0.50]
plt.bar(range(len(names)), y)
plt.xticks(x, names, rotation=45)
plt.yticks(np.arange(0, 1.01, 0.1))
plt.xlabel('opponent')
ax = plt.subplot(2, 3, 3)
ax.set_title(r'$c_{puct}$=20 AlphaGobangZero')
names = [r'$c_{puct}$=1', r'$c_{puct}$=5', 'Random', 'Human']
x = range(len(names))
y = [0.60, 0.20, 1.00, 0.333]
plt.bar(range(len(names)), y)
plt.xticks(x, names, rotation=45)
plt.yticks(np.arange(0, 1.01, 0.1))
plt.xlabel('opponent')
plt.show()
def draw_network():
'''data according to actual experiment'''
plt.figure(figsize=(10, 10))
plt.suptitle('Network Contrast Experiment')
plt.xlabel('opponent')
plt.ylabel('win ratio')
ax = plt.subplot(2, 3, 1)
ax.set_title('AlphaZero')
names = ['ConvNet', 'ResNet_1', 'FFNet', 'Random', 'Human']
x = range(len(names))
y = [0.367, 0.567, 0.967, 1, 0.533]
plt.bar(range(len(names)), y)
plt.xticks(x, names, rotation=45)
plt.yticks(np.arange(0, 1.01, 0.1))
ax = plt.subplot(2, 3, 2)
ax.set_title('ConvNet')
names = ['AlphaZero', 'ResNet_1', 'FFNet', 'Random', 'Human']
x = range(len(names))
y = [0.633, 0.80, 0.933, 1, 0.6]
plt.bar(range(len(names)), y)
plt.xticks(x, names, rotation=45)
plt.yticks(np.arange(0, 1.01, 0.1))
ax = plt.subplot(2, 3, 3)
ax.set_title('FFNet')
names = ['AlphaZero', 'ResNet_1', 'ConvNet', 'Random', 'Human']
x = range(len(names))
y = [0, 0.067, 0.033, 0.933, 0.1]
plt.bar(range(len(names)), y)
plt.xticks(x, names, rotation=45)
plt.yticks(np.arange(0, 1.01, 0.1))
plt.show()
draw_loss()