-
Notifications
You must be signed in to change notification settings - Fork 16
/
AlphaZeroPlayer.py
59 lines (48 loc) · 2.75 KB
/
AlphaZeroPlayer.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
# -*- coding: utf-8 -*-
import numpy as np
from Player import Player
from AlphaZeroMCTS import AlphaZeroMCTS
class AlphaZeroPlayer(Player):
def __init__(self, policy_value_fn, nplays=1000, c_puct=5, player_no=0, is_selfplay=False, add_noise=None, player_name=""):
Player.__init__(self, player_no, player_name)
self.mcts = AlphaZeroMCTS(policy_value_fn, nplays, c_puct, is_selfplay=is_selfplay, epsilon=0)
# True then reuse mcts, Else reset mcts at every move
self._is_selfplay = is_selfplay
# if add_noise = None, then selfplay=True add noise; selfplay=False, don't add noise
# if add_noise = True, then whatever selfplay=True or False, both add noise
self._add_noise = is_selfplay if add_noise is None else add_noise
def reset_player(self):
'''reset, reconstructing the MCTS Tree for next simulation'''
self.mcts.reuse(-1)
def play(self, board, temp=1e-3, explore_step=30, epsilon=0.2, alpha=0.3, after_step_no_noise=6, return_prob=False,**kwargs):
sensible_moves = board.availables
move_probs = np.zeros(board.width * board.height) # the pi vector returned by MCTS as in the alphaGo Zero paper
if len(sensible_moves) > 0:
# with the default temp=1e-3, this is almost equivalent to choosing the move with the highest prob
temp = 1.0 if (self._is_selfplay and len(board.states) < explore_step) else 1e-3
acts, probs = self.mcts.simulate(board, temp)
move_probs[list(acts)] = probs
if self._add_noise:
# not self-play and if steps is larger than after_step_no_noise, then don't add noise
if not self._is_selfplay and len(board.states) > after_step_no_noise:
epsilon = 0
# different from paper, in the paper, noise is added to the root of MCTS Tree
# Here, noise is just added to the result
move = np.random.choice(acts,
p=(1 - epsilon) * probs + epsilon * np.random.dirichlet(alpha * np.ones(len(probs))))
else:
move = np.random.choice(acts, p=probs)
if self._is_selfplay:
# add Dirichlet Noise for exploration (only needed for self-play training)
self.mcts.reuse(move) # update the root node and reuse the search tree
else:
# reset the root node
self.mcts.reuse(-1)
if return_prob:
return move, move_probs #for train
else:
return move #for run
else:
print("WARNING: the board is full")
def __str__(self):
return "AlphaGobangZeroPlayer {}{}".format(self.get_player_no(), self.get_player_name())