forked from divVerent/d0_blind_id
-
Notifications
You must be signed in to change notification settings - Fork 3
/
Copy pathd0_bignum-tommath.c
515 lines (464 loc) · 12 KB
/
d0_bignum-tommath.c
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
/*
* FILE: d0_bignum-tommath.c
* AUTHOR: Rudolf Polzer - [email protected]
*
* Copyright (c) 2010, Rudolf Polzer
* All rights reserved.
*
* Redistribution and use in source and binary forms, with or without
* modification, are permitted provided that the following conditions
* are met:
* 1. Redistributions of source code must retain the above copyright
* notice, this list of conditions and the following disclaimer.
* 2. Redistributions in binary form must reproduce the above copyright
* notice, this list of conditions and the following disclaimer in the
* documentation and/or other materials provided with the distribution.
* 3. Neither the name of the copyright holder nor the names of contributors
* may be used to endorse or promote products derived from this software
* without specific prior written permission.
*
* THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTOR(S) ``AS IS'' AND
* ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
* IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
* ARE DISCLAIMED. IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTOR(S) BE LIABLE
* FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
* DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
* OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
* HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
* LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
* OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
* SUCH DAMAGE.
*
* $Format:commit %H$
* $Id$
*/
#ifdef WIN32
#include <windows.h>
#include <wincrypt.h>
#endif
#include "d0_bignum.h"
#include <string.h>
#include <stdlib.h>
#include <assert.h>
// tommath/tomsfastmath distinction
#if defined(TOMMATH)
# include <tommath.h>
# define TM(name) MP_##name
# define tm(name) mp_##name
#elif defined(TOMSFASTMATH)
# include <tfm.h>
# define TM(name) FP_##name
# define tm(name) fp_##name
# define mp_clear
#else
# error Either TOMMATH or TOMSFASTMATH must be defined.
#endif
struct d0_bignum_s
{
tm(int) z;
};
static d0_bignum_t temp;
static unsigned char numbuf[65536];
static void *tempmutex = NULL; // hold this mutex when using temp or numbuf
#include <stdio.h>
#ifdef WIN32
HCRYPTPROV hCryptProv;
#else
static FILE *randf;
#endif
void rand_bytes(unsigned char *buf, size_t n)
{
#ifdef WIN32
CryptGenRandom(hCryptProv, n, (PBYTE) buf);
#else
if(!randf)
return;
fread(buf, 1, n, randf);
#endif
}
D0_WARN_UNUSED_RESULT D0_BOOL d0_bignum_INITIALIZE(void)
{
D0_BOOL ret = 1;
unsigned char buf[256];
tempmutex = d0_createmutex();
d0_lockmutex(tempmutex);
d0_bignum_init(&temp);
#ifdef WIN32
{
if(CryptAcquireContext(&hCryptProv, NULL, NULL, PROV_RSA_FULL, CRYPT_VERIFYCONTEXT))
{
}
else if(CryptAcquireContext(&hCryptProv, NULL, NULL, PROV_RSA_FULL, CRYPT_VERIFYCONTEXT | CRYPT_NEWKEYSET))
{
}
else
{
fprintf(stderr, "WARNING: could not initialize random number generator (CryptAcquireContext failed)\n");
ret = 0;
hCryptProv = NULL;
}
}
#else
randf = fopen("/dev/urandom", "rb");
if(!randf)
randf = fopen("/dev/random", "rb");
if(randf)
{
setbuf(randf, NULL);
}
else
{
fprintf(stderr, "WARNING: could not initialize random number generator (no random device found)\n");
ret = 0;
}
#endif
d0_unlockmutex(tempmutex);
return ret;
}
void d0_bignum_SHUTDOWN(void)
{
d0_lockmutex(tempmutex);
d0_bignum_clear(&temp);
#ifdef WIN32
if(hCryptProv)
{
CryptReleaseContext(hCryptProv, 0);
hCryptProv = NULL;
}
#endif
d0_unlockmutex(tempmutex);
d0_destroymutex(tempmutex);
tempmutex = NULL;
}
D0_BOOL d0_iobuf_write_bignum(d0_iobuf_t *buf, const d0_bignum_t *bignum)
{
D0_BOOL ret;
size_t count = 0;
d0_lockmutex(tempmutex);
numbuf[0] = (tm(iszero)(&bignum->z) ? 0 : (bignum->z.sign == TM(ZPOS)) ? 1 : 3);
if((numbuf[0] & 3) != 0) // nonzero
{
count = tm(unsigned_bin_size)((tm(int) *) &bignum->z);
if(count > sizeof(numbuf) - 1)
{
d0_unlockmutex(tempmutex);
return 0;
}
tm(to_unsigned_bin)((tm(int) *) &bignum->z, numbuf+1);
}
ret = d0_iobuf_write_packet(buf, numbuf, count + 1);
d0_unlockmutex(tempmutex);
return ret;
}
d0_bignum_t *d0_iobuf_read_bignum(d0_iobuf_t *buf, d0_bignum_t *bignum)
{
size_t count = sizeof(numbuf);
d0_lockmutex(tempmutex);
if(!d0_iobuf_read_packet(buf, numbuf, &count))
{
d0_unlockmutex(tempmutex);
return NULL;
}
if(count < 1)
{
d0_unlockmutex(tempmutex);
return NULL;
}
if(!bignum)
bignum = d0_bignum_new();
if(!bignum)
{
d0_unlockmutex(tempmutex);
return NULL;
}
if(numbuf[0] & 3) // nonzero
{
tm(read_unsigned_bin)(&bignum->z, numbuf+1, count-1);
if(numbuf[0] & 2) // negative
bignum->z.sign = TM(NEG);
}
else // zero
{
tm(zero)(&bignum->z);
}
d0_unlockmutex(tempmutex);
return bignum;
}
ssize_t d0_bignum_export_unsigned(const d0_bignum_t *bignum, void *buf, size_t bufsize)
{
unsigned long bufsize_;
unsigned long count;
count = tm(unsigned_bin_size)((tm(int) *) &bignum->z);
if(count > bufsize)
return -1;
if(bufsize > count)
{
// pad from left (big endian numbers!)
memset(buf, 0, bufsize - count);
buf += bufsize - count;
}
tm(to_unsigned_bin)((tm(int) *) &bignum->z, buf);
return bufsize;
}
d0_bignum_t *d0_bignum_import_unsigned(d0_bignum_t *bignum, const void *buf, size_t bufsize)
{
size_t count;
if(!bignum) bignum = d0_bignum_new(); if(!bignum) return NULL;
tm(read_unsigned_bin)(&bignum->z, (void *) buf, bufsize);
return bignum;
}
d0_bignum_t *d0_bignum_new(void)
{
d0_bignum_t *b = d0_malloc(sizeof(d0_bignum_t));
tm(init)(&b->z);
return b;
}
void d0_bignum_free(d0_bignum_t *a)
{
#ifdef TOMMATH
tm(clear)(&a->z);
#endif
d0_free(a);
}
void d0_bignum_init(d0_bignum_t *b)
{
tm(init)(&b->z);
}
void d0_bignum_clear(d0_bignum_t *a)
{
#ifdef TOMMATH
tm(clear)(&a->z);
#endif
}
size_t d0_bignum_size(const d0_bignum_t *r)
{
return tm(count_bits)((tm(int) *) &r->z);
}
int d0_bignum_cmp(const d0_bignum_t *a, const d0_bignum_t *b)
{
return tm(cmp)((tm(int) *) &a->z, (tm(int) *) &b->z);
}
static d0_bignum_t *d0_bignum_rand_0_to_limit(d0_bignum_t *r, const d0_bignum_t *limit)
{
size_t n = d0_bignum_size(limit);
size_t b = (n + 7) / 8;
unsigned char mask = "\xFF\x7F\x3F\x1F\x0F\x07\x03\x01"[8*b - n];
assert(b <= sizeof(numbuf));
d0_lockmutex(tempmutex);
for(;;)
{
rand_bytes(numbuf, b);
numbuf[0] &= mask;
r = d0_bignum_import_unsigned(r, numbuf, b);
if(d0_bignum_cmp(r, limit) < 0)
{
d0_unlockmutex(tempmutex);
return r;
}
}
}
d0_bignum_t *d0_bignum_rand_range(d0_bignum_t *r, const d0_bignum_t *min, const d0_bignum_t *max)
{
d0_lockmutex(tempmutex);
tm(sub)((tm(int) *) &max->z, (tm(int) *) &min->z, &temp.z);
r = d0_bignum_rand_0_to_limit(r, &temp);
d0_unlockmutex(tempmutex);
tm(add)((tm(int) *) &r->z, (tm(int) *) &min->z, &r->z);
return r;
}
d0_bignum_t *d0_bignum_rand_bit_atmost(d0_bignum_t *r, size_t n)
{
d0_lockmutex(tempmutex);
if(!d0_bignum_one(&temp))
{
d0_unlockmutex(tempmutex);
return NULL;
}
if(!d0_bignum_shl(&temp, &temp, n))
{
d0_unlockmutex(tempmutex);
return NULL;
}
r = d0_bignum_rand_0_to_limit(r, &temp);
d0_unlockmutex(tempmutex);
return r;
}
d0_bignum_t *d0_bignum_rand_bit_exact(d0_bignum_t *r, size_t n)
{
d0_lockmutex(tempmutex);
if(!d0_bignum_one(&temp))
{
d0_unlockmutex(tempmutex);
return NULL;
}
if(!d0_bignum_shl(&temp, &temp, n-1))
{
d0_unlockmutex(tempmutex);
return NULL;
}
r = d0_bignum_rand_0_to_limit(r, &temp);
if(!d0_bignum_add(r, r, &temp))
{
d0_unlockmutex(tempmutex);
return NULL;
}
d0_unlockmutex(tempmutex);
return r;
}
d0_bignum_t *d0_bignum_zero(d0_bignum_t *r)
{
if(!r) r = d0_bignum_new(); if(!r) return NULL;
tm(zero)(&r->z);
return r;
}
d0_bignum_t *d0_bignum_one(d0_bignum_t *r)
{
return d0_bignum_int(r, 1);
}
d0_bignum_t *d0_bignum_int(d0_bignum_t *r, int n)
{
if(!r) r = d0_bignum_new(); if(!r) return NULL;
#ifdef TOMMATH
tm(set_int)(&r->z, n);
#else
// libtomsfastmath lacks this function
if (n < 0)
assert(!"Sorry, importing signed is not implemented");
{
unsigned char nbuf[sizeof(n)];
size_t i;
// big endian!
for (i = sizeof(n); i-- > 0; )
{
nbuf[i] = n & 255;
n >>= 8;
}
tm(read_unsigned_bin)(&r->z, nbuf, sizeof(n));
}
#endif
return r;
}
d0_bignum_t *d0_bignum_mov(d0_bignum_t *r, const d0_bignum_t *a)
{
if(r == a)
return r; // trivial
if(!r) r = d0_bignum_new(); if(!r) return NULL;
tm(copy)((tm(int) *) &a->z, &r->z);
return r;
}
d0_bignum_t *d0_bignum_neg(d0_bignum_t *r, const d0_bignum_t *a)
{
if(!r) r = d0_bignum_new(); if(!r) return NULL;
tm(neg)((tm(int) *) &a->z, &r->z);
return r;
}
d0_bignum_t *d0_bignum_shl(d0_bignum_t *r, const d0_bignum_t *a, ssize_t n)
{
if(!r) r = d0_bignum_new(); if(!r) return NULL;
if(n > 0)
tm(mul_2d)((tm(int) *) &a->z, n, &r->z);
else if(n < 0)
tm(div_2d)((tm(int) *) &a->z, -n, &r->z, NULL);
else
tm(copy)((tm(int) *) &a->z, &r->z);
return r;
}
d0_bignum_t *d0_bignum_add(d0_bignum_t *r, const d0_bignum_t *a, const d0_bignum_t *b)
{
if(!r) r = d0_bignum_new(); if(!r) return NULL;
tm(add)((tm(int) *) &a->z, (tm(int) *) &b->z, &r->z);
return r;
}
d0_bignum_t *d0_bignum_sub(d0_bignum_t *r, const d0_bignum_t *a, const d0_bignum_t *b)
{
if(!r) r = d0_bignum_new(); if(!r) return NULL;
tm(sub)((tm(int) *) &a->z, (tm(int) *) &b->z, &r->z);
return r;
}
d0_bignum_t *d0_bignum_mul(d0_bignum_t *r, const d0_bignum_t *a, const d0_bignum_t *b)
{
if(!r) r = d0_bignum_new(); if(!r) return NULL;
tm(mul)((tm(int) *) &a->z, (tm(int) *) &b->z, &r->z);
return r;
}
d0_bignum_t *d0_bignum_divmod(d0_bignum_t *q, d0_bignum_t *m, const d0_bignum_t *a, const d0_bignum_t *b)
{
if(!q && !m)
m = d0_bignum_new();
if(q)
tm(div)((tm(int) *) &a->z, (tm(int) *) &b->z, &q->z, m ? &m->z : NULL);
else
tm(mod)((tm(int) *) &a->z, (tm(int) *) &b->z, &m->z);
if(m)
return m;
else
return q;
}
d0_bignum_t *d0_bignum_mod_add(d0_bignum_t *r, const d0_bignum_t *a, const d0_bignum_t *b, const d0_bignum_t *m)
{
if(!r) r = d0_bignum_new(); if(!r) return NULL;
tm(addmod)((tm(int) *) &a->z, (tm(int) *) &b->z, (tm(int) *) &m->z, &r->z);
return r;
}
d0_bignum_t *d0_bignum_mod_sub(d0_bignum_t *r, const d0_bignum_t *a, const d0_bignum_t *b, const d0_bignum_t *m)
{
if(!r) r = d0_bignum_new(); if(!r) return NULL;
tm(submod)((tm(int) *) &a->z, (tm(int) *) &b->z, (tm(int) *) &m->z, &r->z);
return r;
}
d0_bignum_t *d0_bignum_mod_mul(d0_bignum_t *r, const d0_bignum_t *a, const d0_bignum_t *b, const d0_bignum_t *m)
{
if(!r) r = d0_bignum_new(); if(!r) return NULL;
tm(mulmod)((tm(int) *) &a->z, (tm(int) *) &b->z, (tm(int) *) &m->z, &r->z);
return r;
}
d0_bignum_t *d0_bignum_mod_pow(d0_bignum_t *r, const d0_bignum_t *a, const d0_bignum_t *b, const d0_bignum_t *m)
{
if(!r) r = d0_bignum_new(); if(!r) return NULL;
tm(exptmod)((tm(int) *) &a->z, (tm(int) *) &b->z, (tm(int) *) &m->z, &r->z);
return r;
}
D0_BOOL d0_bignum_mod_inv(d0_bignum_t *r, const d0_bignum_t *a, const d0_bignum_t *m)
{
// here, r MUST be set, as otherwise we cannot return error state!
return tm(invmod)((tm(int) *) &a->z, (tm(int) *) &m->z, &r->z) == TM(OKAY);
}
int d0_bignum_isprime(const d0_bignum_t *r, int param)
{
if(param < 1)
param = 1;
#ifdef TOMMATH
{
int ret = 0;
tm(prime_is_prime)((tm(int) *) &r->z, param, &ret);
return ret;
}
#else
// this does 8 rabin tests; for param > 8, do more?
return tm(isprime)((tm(int) *) &r->z);
#endif
}
d0_bignum_t *d0_bignum_gcd(d0_bignum_t *r, d0_bignum_t *s, d0_bignum_t *t, const d0_bignum_t *a, const d0_bignum_t *b)
{
if(!r) r = d0_bignum_new(); if(!r) return NULL;
if(s || t)
{
#ifdef TOMMATH
tm(exteuclid)((tm(int) *) &a->z, (tm(int) *) &b->z, s ? &s->z : NULL, t ? &t->z : NULL, &r->z);
#else
assert(!"Extended gcd not implemented");
#endif
}
else
tm(gcd)((tm(int) *) &a->z, (tm(int) *) &b->z, &r->z);
return r;
}
char *d0_bignum_tostring(const d0_bignum_t *x, unsigned int base)
{
char *str;
int sz = 0;
tm(radix_size)((tm(int) *) &x->z, base, &sz);
str = d0_malloc(sz + 1);
tm(toradix)((tm(int) *) &x->z, str, base);
return str;
}