-
Notifications
You must be signed in to change notification settings - Fork 68
/
Copy pathMW-Net.py
290 lines (233 loc) · 10.9 KB
/
MW-Net.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
# -*- coding: utf-8 -*-
import argparse
import os
import shutil
import time
import torch
import torch.nn as nn
import torch.nn.functional as F
import torch.nn.parallel
import torch.backends.cudnn as cudnn
import torch.optim
import torch.utils.data
import torchvision.transforms as transforms
import torchvision.datasets as datasets
from torch.autograd import Variable
from torch.utils.data.sampler import SubsetRandomSampler
import matplotlib.pyplot as plt
# import sklearn.metrics as sm
# import pandas as pd
# import sklearn.metrics as sm
import random
import numpy as np
# from wideresnet import WideResNet, VNet
from resnet import ResNet32,VNet
from load_corrupted_data import CIFAR10, CIFAR100
parser = argparse.ArgumentParser(description='PyTorch WideResNet Training')
parser.add_argument('--dataset', default='cifar10', type=str,
help='dataset (cifar10 [default] or cifar100)')
parser.add_argument('--corruption_prob', type=float, default=0.4,
help='label noise')
parser.add_argument('--corruption_type', '-ctype', type=str, default='unif',
help='Type of corruption ("unif" or "flip" or "flip2").')
parser.add_argument('--num_meta', type=int, default=1000)
parser.add_argument('--epochs', default=120, type=int,
help='number of total epochs to run')
parser.add_argument('--iters', default=60000, type=int,
help='number of total iters to run')
parser.add_argument('--start-epoch', default=0, type=int,
help='manual epoch number (useful on restarts)')
parser.add_argument('--batch_size', '--batch-size', default=100, type=int,
help='mini-batch size (default: 100)')
parser.add_argument('--lr', '--learning-rate', default=1e-1, type=float,
help='initial learning rate')
parser.add_argument('--momentum', default=0.9, type=float, help='momentum')
parser.add_argument('--nesterov', default=True, type=bool, help='nesterov momentum')
parser.add_argument('--weight-decay', '--wd', default=5e-4, type=float,
help='weight decay (default: 5e-4)')
parser.add_argument('--print-freq', '-p', default=10, type=int,
help='print frequency (default: 10)')
parser.add_argument('--layers', default=28, type=int,
help='total number of layers (default: 28)')
parser.add_argument('--widen-factor', default=10, type=int,
help='widen factor (default: 10)')
parser.add_argument('--droprate', default=0, type=float,
help='dropout probability (default: 0.0)')
parser.add_argument('--no-augment', dest='augment', action='store_false',
help='whether to use standard augmentation (default: True)')
parser.add_argument('--resume', default='', type=str,
help='path to latest checkpoint (default: none)')
parser.add_argument('--name', default='WideResNet-28-10', type=str,
help='name of experiment')
parser.add_argument('--seed', type=int, default=1)
parser.add_argument('--prefetch', type=int, default=0, help='Pre-fetching threads.')
parser.set_defaults(augment=True)
args = parser.parse_args()
use_cuda = True
torch.manual_seed(args.seed)
device = torch.device("cuda" if use_cuda else "cpu")
print()
print(args)
def build_dataset():
normalize = transforms.Normalize(mean=[x / 255.0 for x in [125.3, 123.0, 113.9]],
std=[x / 255.0 for x in [63.0, 62.1, 66.7]])
if args.augment:
train_transform = transforms.Compose([
transforms.ToTensor(),
transforms.Lambda(lambda x: F.pad(x.unsqueeze(0),
(4, 4, 4, 4), mode='reflect').squeeze()),
transforms.ToPILImage(),
transforms.RandomCrop(32),
transforms.RandomHorizontalFlip(),
transforms.ToTensor(),
normalize,
])
else:
train_transform = transforms.Compose([
transforms.ToTensor(),
normalize,
])
test_transform = transforms.Compose([
transforms.ToTensor(),
normalize
])
if args.dataset == 'cifar10':
train_data_meta = CIFAR10(
root='../data', train=True, meta=True, num_meta=args.num_meta, corruption_prob=args.corruption_prob,
corruption_type=args.corruption_type, transform=train_transform, download=True)
train_data = CIFAR10(
root='../data', train=True, meta=False, num_meta=args.num_meta, corruption_prob=args.corruption_prob,
corruption_type=args.corruption_type, transform=train_transform, download=True, seed=args.seed)
test_data = CIFAR10(root='../data', train=False, transform=test_transform, download=True)
elif args.dataset == 'cifar100':
train_data_meta = CIFAR100(
root='../data', train=True, meta=True, num_meta=args.num_meta, corruption_prob=args.corruption_prob,
corruption_type=args.corruption_type, transform=train_transform, download=True)
train_data = CIFAR100(
root='../data', train=True, meta=False, num_meta=args.num_meta, corruption_prob=args.corruption_prob,
corruption_type=args.corruption_type, transform=train_transform, download=True, seed=args.seed)
test_data = CIFAR100(root='../data', train=False, transform=test_transform, download=True)
train_loader = torch.utils.data.DataLoader(
train_data, batch_size=args.batch_size, shuffle=True,
num_workers=args.prefetch, pin_memory=True)
train_meta_loader = torch.utils.data.DataLoader(
train_data_meta, batch_size=args.batch_size, shuffle=True,
num_workers=args.prefetch, pin_memory=True)
test_loader = torch.utils.data.DataLoader(test_data, batch_size=args.batch_size, shuffle=False,
num_workers=args.prefetch, pin_memory=True)
return train_loader, train_meta_loader, test_loader
def build_model():
model = ResNet32(args.dataset == 'cifar10' and 10 or 100)
if torch.cuda.is_available():
model.cuda()
torch.backends.cudnn.benchmark = True
return model
def accuracy(output, target, topk=(1,)):
"""Computes the precision@k for the specified values of k"""
maxk = max(topk)
batch_size = target.size(0)
_, pred = output.topk(maxk, 1, True, True)
pred = pred.t()
correct = pred.eq(target.view(1, -1).expand_as(pred))
res = []
for k in topk:
correct_k = correct[:k].view(-1).float().sum(0)
res.append(correct_k.mul_(100.0 / batch_size))
return res
def adjust_learning_rate(optimizer, epochs):
lr = args.lr * ((0.1 ** int(epochs >= 80)) * (0.1 ** int(epochs >= 100))) # For WRN-28-10
for param_group in optimizer.param_groups:
param_group['lr'] = lr
def test(model, test_loader):
model.eval()
correct = 0
test_loss = 0
with torch.no_grad():
for batch_idx, (inputs, targets) in enumerate(test_loader):
inputs, targets = inputs.to(device), targets.to(device)
outputs = model(inputs)
test_loss +=F.cross_entropy(outputs, targets).item()
_, predicted = outputs.max(1)
correct += predicted.eq(targets).sum().item()
test_loss /= len(test_loader.dataset)
accuracy = 100. * correct / len(test_loader.dataset)
print('\nTest set: Average loss: {:.4f}, Accuracy: {}/{} ({:.4f}%)\n'.format(
test_loss, correct, len(test_loader.dataset),
accuracy))
return accuracy
def train(train_loader,train_meta_loader,model, vnet,optimizer_model,optimizer_vnet,epoch):
print('\nEpoch: %d' % epoch)
train_loss = 0
meta_loss = 0
train_meta_loader_iter = iter(train_meta_loader)
for batch_idx, (inputs, targets) in enumerate(train_loader):
model.train()
inputs, targets = inputs.to(device), targets.to(device)
meta_model = build_model().cuda()
meta_model.load_state_dict(model.state_dict())
outputs = meta_model(inputs)
cost = F.cross_entropy(outputs, targets, reduce=False)
cost_v = torch.reshape(cost, (len(cost), 1))
v_lambda = vnet(cost_v.data)
l_f_meta = torch.sum(cost_v * v_lambda)/len(cost_v)
meta_model.zero_grad()
grads = torch.autograd.grad(l_f_meta, (meta_model.params()), create_graph=True)
meta_lr = args.lr * ((0.1 ** int(epoch >= 80)) * (0.1 ** int(epoch >= 100))) # For ResNet32
meta_model.update_params(lr_inner=meta_lr, source_params=grads)
del grads
try:
inputs_val, targets_val = next(train_meta_loader_iter)
except StopIteration:
train_meta_loader_iter = iter(train_meta_loader)
inputs_val, targets_val = next(train_meta_loader_iter)
inputs_val, targets_val = inputs_val.to(device), targets_val.to(device)
y_g_hat = meta_model(inputs_val)
l_g_meta = F.cross_entropy(y_g_hat, targets_val)
prec_meta = accuracy(y_g_hat.data, targets_val.data, topk=(1,))[0]
optimizer_vnet.zero_grad()
l_g_meta.backward()
optimizer_vnet.step()
outputs = model(inputs)
cost_w = F.cross_entropy(outputs, targets, reduce=False)
cost_v = torch.reshape(cost_w, (len(cost_w), 1))
prec_train = accuracy(outputs.data, targets.data, topk=(1,))[0]
with torch.no_grad():
w_new = vnet(cost_v)
loss = torch.sum(cost_v * w_new)/len(cost_v)
optimizer_model.zero_grad()
loss.backward()
optimizer_model.step()
train_loss += loss.item()
meta_loss += l_g_meta.item()
if (batch_idx + 1) % 50 == 0:
print('Epoch: [%d/%d]\t'
'Iters: [%d/%d]\t'
'Loss: %.4f\t'
'MetaLoss:%.4f\t'
'Prec@1 %.2f\t'
'Prec_meta@1 %.2f' % (
(epoch + 1), args.epochs, batch_idx + 1, len(train_loader.dataset)/args.batch_size, (train_loss / (batch_idx + 1)),
(meta_loss / (batch_idx + 1)), prec_train, prec_meta))
train_loader, train_meta_loader, test_loader = build_dataset()
# create model
model = build_model()
vnet = VNet(1, 100, 1).cuda()
if args.dataset == 'cifar10':
num_classes = 10
if args.dataset == 'cifar100':
num_classes = 100
optimizer_model = torch.optim.SGD(model.params(), args.lr,
momentum=args.momentum, weight_decay=args.weight_decay)
optimizer_vnet = torch.optim.Adam(vnet.params(), 1e-3,
weight_decay=1e-4)
def main():
best_acc = 0
for epoch in range(args.epochs):
adjust_learning_rate(optimizer_model, epoch)
train(train_loader,train_meta_loader,model, vnet,optimizer_model,optimizer_vnet,epoch)
test_acc = test(model=model, test_loader=test_loader)
if test_acc >= best_acc:
best_acc = test_acc
print('best accuracy:', best_acc)
if __name__ == '__main__':
main()