Skip to content

Latest commit

 

History

History
87 lines (70 loc) · 2.71 KB

masknet.md

File metadata and controls

87 lines (70 loc) · 2.71 KB

MaskNet

简介

MaskNet提出了一种instance-guided mask方法,该方法在DNN中的特征嵌入层和前馈层同时使用element-wise product。instance-guided mask包含全局上下文信息,动态地融入到特征嵌入层和前馈层,突出重要的特征。

MaskNet

配置说明

model_config {
  model_name: 'MaskNet'
  model_class: 'RankModel'
  feature_groups: {
    group_name: 'all'
    feature_names: 'user_id'
    feature_names: 'movie_id'
    feature_names: 'job_id'
    feature_names: 'age'
    feature_names: 'gender'
    feature_names: 'year'
    feature_names: 'genres'
    wide_deep: DEEP
  }
  backbone {
    blocks {
      name: "mask_net"
      inputs {
        feature_group_name: "all"
      }
      keras_layer {
        class_name: 'MaskNet'
        masknet {
          mask_blocks {
            aggregation_size: 512
            output_size: 256
          }
          mask_blocks {
            aggregation_size: 512
            output_size: 256
          }
          mask_blocks {
            aggregation_size: 512
            output_size: 256
          }
          mlp {
            hidden_units: [512, 256]
          }
        }
      }
    }
    concat_blocks: ['mask_net']
  }
  model_params {
  }
  embedding_regularization: 1e-4
}
  • model_name: 任意自定义字符串,仅有注释作用

  • model_class: 'RankModel', 不需要修改, 通过组件化方式搭建的单目标排序模型都叫这个名字

  • feature_groups: 配置一个名为'all'的feature_group。

  • backbone: 通过组件化的方式搭建的主干网络,参考文档

    • blocks: 由多个组件块组成的一个有向无环图(DAG),框架负责按照DAG的拓扑排序执行个组件块关联的代码逻辑,构建TF Graph的一个子图
    • name/inputs: 每个block有一个唯一的名字(name),并且有一个或多个输入(inputs)和输出
    • keras_layer: 加载由class_name指定的自定义或系统内置的keras layer,执行一段代码逻辑;参考文档
    • masknet: MaskNet模型的参数,详见参考文档
    • concat_blocks: DAG的输出节点由concat_blocks配置项定义,如果不配置concat_blocks,框架会自动拼接DAG的所有叶子节点并输出。
  • model_params:

    • l2_regularization: (可选) 对DNN参数的regularization, 减少overfit
  • embedding_regularization: 对embedding部分加regularization, 减少overfit

示例Config

masknet_on_movielens.config

参考论文

MaskNet