-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathtrain.py
340 lines (308 loc) · 16.2 KB
/
train.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
from __future__ import division
from utilities import *
import argparse
from sklearn.metrics import accuracy_score
import json
import gzip
from models.rnn import BasicRNN
from models.td_rnn import TargetRNN
import pickle
from datetime import datetime
import os
import random
import numpy as np
import time
import sys
import math
import torch
from tqdm import tqdm
import torch.nn as nn
from torch.autograd import Variable
import torch.optim as optim
from keras.preprocessing import sequence
from collections import Counter
import time
import errno
def tensor_to_numpy(x):
''' Need to cast before calling numpy()'''
return x.data.type(torch.DoubleTensor).numpy()
def clip_gradient(model, clip):
"""Computes a gradient clipping co-efficient based on gradient norm.
Evade gradient explosion.
"""
totalnorm = 0
for p in model.parameters():
modulenorm = p.grad.data.norm()
totalnorm += modulenorm ** 2
totalnorm = math.sqrt(totalnorm)
return min(1, clip / (totalnorm + 1e-6))
def repackage_hidden(h):
"""Wraps hidden states in new Variables, to detach them from their history."""
# What's this?
if type(h) == torch.Tensor:
return h
else:
return tuple(repackage_hidden(v) for v in h)
class BaseExperiment:
''' Implements a base experiment class for Aspect-Based Sentiment Analysis on SemEval 2014'''
def __init__(self):
self.uuid = datetime.now().strftime("%d_%H:%M:%S")
self.parser = argparse.ArgumentParser()
self.parser.add_argument("--mode", dest="mode", type=str, metavar='<str>', default='term', help="Experiment Mode (term|aspect) (default=term)")
self.parser.add_argument("--dataset", dest="dataset", type=str, metavar='<str>', default='Restaurants', help="Dataset (Laptop/Restaurants) (default=Restaurants)")
self.parser.add_argument("--mdl", dest="model_type", type=str, metavar='<str>', default='RNN', help="(RNN|TD-RNN|ATT-RNN)")
self.parser.add_argument("--rnn_type", dest="rnn_type", type=str, metavar='<str>', default='LSTM', help="Recurrent unit type (lstm|gru|simple) (default=lstm)")
self.parser.add_argument("--term_mdl", dest="term_model", type=str, metavar='<str>', default='mean', help="Model type for term sequences (default=mean)")
self.parser.add_argument("--opt", dest="opt", type=str, metavar='<str>', default='Adam', help="Optimization algorithm (rmsprop|sgd|adagrad|adadelta|adam|adamax) (default=rmsprop)")
self.parser.add_argument("--emb_size", dest="embedding_size", type=int, metavar='<int>', default=300, help="Embeddings dimension (default=50)")
self.parser.add_argument("--rnn_size", dest="rnn_size", type=int, metavar='<int>', default=300, help="RNN dimension. '0' means no RNN layer (default=300)")
self.parser.add_argument("--batch-size", dest="batch_size", type=int, metavar='<int>', default=20, help="Batch size (default=256)")
self.parser.add_argument("--rnn_layers", dest="rnn_layers", type=int, metavar='<int>', default=1, help="Number of RNN layers")
self.parser.add_argument("--rnn_direction", dest="rnn_direction", type=str, metavar='<str>', default='uni', help="Direction of RNN")
self.parser.add_argument("--aggregation", dest="aggregation", type=str, metavar='<str>', default='mean', help="The aggregation method for regp and bregp types (mot|attsum|attmean) (default=mot)")
self.parser.add_argument("--dropout", dest="dropout_prob", type=float, metavar='<float>', default=0.5, help="The dropout probability. To disable, give a negative number (default=0.5)")
self.parser.add_argument("--pretrained", dest="pretrained", type=int, metavar='<int>', default=1, help="Whether to use pretrained or not")
self.parser.add_argument("--epochs", dest="epochs", type=int, metavar='<int>', default=50, help="Number of epochs (default=50)")
self.parser.add_argument("--attention_width", dest="attention_width", type=int, metavar='<int>', default=5, help="Width of attention (default=5)")
self.parser.add_argument("--maxlen", dest="maxlen", type=int, metavar='<int>', default=0, help="Maximum allowed number of words during training. '0' means no limit (default=0)")
self.parser.add_argument('--gpu', dest='gpu', type=int, metavar='<int>', default=0, help="Specify which GPU to use (default=0)")
self.parser.add_argument("--hdim", dest='hidden_layer_size', type=int, metavar='<int>', default=300, help="Hidden layer size (default=50)")
self.parser.add_argument("--lr", dest='learn_rate', type=float, metavar='<float>', default=0.001, help="Learning Rate")
self.parser.add_argument("--clip_norm", dest='clip_norm', type=int, metavar='<int>', default=0, help="Clip Norm value")
self.parser.add_argument("--trainable", dest='trainable', type=int, metavar='<int>', default=1, help="Trainable Word Embeddings (0|1)")
self.parser.add_argument('--l2_reg', dest='l2_reg', type=float, metavar='<float>', default=0.0, help='L2 regularization, default=0')
self.parser.add_argument('--eval', dest='eval', type=int, metavar='<int>', default=1, help='Epoch to evaluate results')
self.parser.add_argument('--log', dest='log', type=int, metavar='<int>', default=1, help='1 to output to file and 0 otherwise')
self.parser.add_argument('--dev', dest='dev', type=int, metavar='<int>', default=1, help='1 for development set 0 to train-all')
self.parser.add_argument('--cuda', action='store_true', help='use CUDA')
self.parser.add_argument('--seed', type=int, default=1111, help='random seed')
self.parser.add_argument('--toy', action='store_true', help='Use toy dataset (for fast testing)')
self.args = self.parser.parse_args()
# Set the random seed manually for reproducibility.
torch.manual_seed(self.args.seed)
if torch.cuda.is_available():
if not self.args.cuda:
print("WARNING: You have a CUDA device, so you should probably run with --cuda")
else:
print("There are {} CUDA devices".format(torch.cuda.device_count()))
if(self.args.gpu > 0):
print("Setting torch GPU to {}".format(self.args.gpu))
torch.cuda.set_device(self.args.gpu)
print("Using device:{} ".format(torch.cuda.current_device()))
torch.cuda.manual_seed(self.args.seed)
np.random.seed(self.args.seed)
random.seed(self.args.seed)
# Load Data files for training
if self.args.toy:
file_path = 'store/{}_{}_{}.pkl'.format(self.args.dataset, self.args.mode, 'toy')
else:
file_path = 'store/{}_{}.pkl'.format(self.args.dataset, self.args.mode)
with open(file_path,'rb') as f:
self.env = pickle.load(f)
print('Stored Environment:{}'.format(self.env.keys()))
self.train_set = self.env['train']
self.test_set = self.env['test']
self.dev_set = self.env['dev']
if self.args.dev == 0:
self.train_set = self.train_set + self.dev_set
print("Loaded environment")
print("Creating Model...")
self.model_name = self.args.aggregation + '_' + self.args.model_type
if self.args.model_type == 'TD-RNN':
self.mdl = TargetRNN(self.args, len(self.env['word_index']), pretrained=self.env['glove'])
elif self.args.model_type in ['RNN','ATT-RNN']:
self.mdl = BasicRNN(self.args, len(self.env['word_index']), pretrained=self.env['glove'])
if self.args.cuda:
self.mdl.cuda()
def make_dir(self):
if(self.args.log == 1):
self.out_dir = 'logs/{}/{}/{}/{}/'.format(self.mode, self.dataset, self.model_name, self.uuid)
self.mkdir_p(self.out_dir)
self.mdl_path = self.out_dir + '/mdl.ckpt' # What is the new file format?
self.path = self.out_dir + '/logs.txt'
self.print_args(self.args, path=self.path)
def write_to_file(self, txt):
if(self.args.log == 1):
with open(self.path, 'a+') as f:
f.write(txt + '\n')
print(txt)
def print_args(self, args, path=None):
if path:
output_file = open(path, 'w')
args.command = ' '.join(sys.argv)
items = vars(args)
output_file.write('=============================================== \n')
for key in sorted(items.keys(), key=lambda s: s.lower()):
value = items[key]
if not value:
value = "None"
if path is not None:
output_file.write(" " + key + ": " + str(items[key]) + "\n")
output_file.write('=============================================== \n')
if path:
output_file.close()
del args.command
def mkdir_p(self, path):
if path == '':
return
try:
os.makedirs(path)
except OSError as exc: # Python > 2.5
if exc.errno == errno.EEXIST and os.path.isdir(path):
pass
else:
raise
def evaluate(self, x, eval_type='test'):
''' Evaluates normal RNN model'''
hidden = self.mdl.init_hidden(len(x))
sentence, targets, actual_batch = self.make_batch(x, -1, evaluation=True)
output, hidden = self.mdl(sentence, hidden)
loss = self.criterion(output, targets).data # cross entropy
print("Test loss={}".format(loss.item()))
accuracy = self.get_accuracy(output, targets)
def evaluate_target(self, x, eval_type='test'):
''' Evaluates Target-RNN model'''
sentence, targets, actual_batch = self.make_target_batch(x, -1, evaluation=True)
left_input, right_input = sentence[0], sentence[1]
if sentence is None:
return None
left_hidden = self.mdl.init_hidden(actual_batch)
right_hidden = self.mdl.init_hidden(actual_batch)
left_hidden = repackage_hidden(left_hidden)
right_hidden = repackage_hidden(right_hidden)
output = self.mdl(left_input, right_input, left_hidden, right_hidden)
loss = self.criterion(output, targets).data[0]
print("Test loss={}".format(loss))
accuracy = self.get_accuracy(output, targets)
def get_accuracy(self, output, targets):
output = tensor_to_numpy(output)
targets = tensor_to_numpy(targets)
output = np.argmax(output, axis=1)
dist = dict(Counter(output))
print("Output Distribution={}".format(dist))
acc = accuracy_score(targets, output)
print("Accuracy={}".format(acc))
return acc
def pad_to_batch_max(self, x):
lengths = [len(y) for y in x]
max_len = np.max(lengths)
padded_tokens = sequence.pad_sequences(x, maxlen=max_len)
return torch.LongTensor(padded_tokens.tolist()).transpose(0,1)
def make_target_batch(self, x, i, evaluation=False):
''' target dependent batches'''
if i >= 0:
batch = x[int(i * self.args.batch_size): int(i * self.args.batch_size) + self.args.batch_size]
else:
batch = x
if len(batch) == 0:
return None, None, self.args.batch_size
left_tensor = self.pad_to_batch_max([x['left'] for x in batch])
right_tensor = self.pad_to_batch_max([x['right'] for x in batch][::-1])
targets = torch.LongTensor(np.array([x['polarity'] for x in batch], dtype=np.int32).tolist())
assert(left_tensor.size(1) == right_tensor.size(1))
actual_batch = left_tensor.size(1)
if self.args.cuda:
left_tensor = left_tensor.cuda()
right_tensor = right_tensor.cuda()
targets = targets.cuda()
left_tensor = Variable(left_tensor)
right_tensor = Variable(right_tensor)
targets = Variable(targets, volatile=evaluation)
return [left_tensor, right_tensor], targets, actual_batch
def make_batch(self, x, i, evaluation=False):
''' -1 to take all'''
if i >= 0:
batch = x[int(i * self.args.batch_size): int(i * self.args.batch_size) + self.args.batch_size]
else:
batch = x
if len(batch) == 0:
return None, None, self.args.batch_size
sentence = self.pad_to_batch_max([x['tokenized_txt'] for x in batch])
targets = torch.LongTensor(np.array([x['polarity'] for x in batch], dtype=np.int32).tolist())
actual_batch = sentence.size(1)
if self.args.cuda:
sentence = sentence.cuda()
targets = targets.cuda()
sentence = Variable(sentence)
targets = Variable(targets, volatile=evaluation)
return sentence, targets, actual_batch
def select_optimizer(self):
if self.args.opt == 'Adam':
self.optimizer = optim.Adam(self.mdl.parameters(), lr=self.args.learn_rate)
elif self.args.opt == 'RMS':
self.optimizer = optim.RMSprop(self.mdl.parameters(), lr=self.args.learn_rate)
elif self.args.opt == 'SGD':
self.optimizer = optim.SGD(self.mdl.parameters(), lr=self.args.learn_rate)
elif self.args.opt == 'Adagrad':
self.optimizer = optim.Adagrad(self.mdl.parameters(), lr=self.args.learn_rate)
elif self.args.opt == 'Adadelta':
self.optimizer = optim.Adadelta(self.mdl.parameters(), lr=self.args.learn_rate)
def train_target_batch(self, i):
''' Trains a regular Target-Dependent RNN model'''
sentence, targets, actual_batch = self.make_target_batch(self.train_set, i)
left_input, right_input = sentence[0], sentence[1]
if(sentence is None):
return None
# Do I need to init both? Can I just pass in 0 vectors?
left_hidden = self.mdl.init_hidden(actual_batch)
right_hidden = self.mdl.init_hidden(actual_batch)
left_hidden = repackage_hidden(left_hidden)
right_hidden = repackage_hidden(right_hidden)
self.mdl.zero_grad()
output = self.mdl(left_input, right_input, left_hidden, right_hidden)
loss = self.criterion(output, targets)
loss.backward()
if self.args.clip_norm > 0:
coeff = clip_gradient(self.mdl, self.args.clip_norm)
for p in self.mdl.parameters():
p.grad.mul_(coeff)
self.optimizer.step()
return loss.item()
def train_batch(self, i):
''' Trains a regular RNN model'''
sentence, targets, actual_batch = self.make_batch(self.train_set, i)
if sentence is None:
return None
hidden = self.mdl.init_hidden(actual_batch)
hidden = repackage_hidden(hidden)
self.mdl.zero_grad()
output, hidden = self.mdl(sentence, hidden)
loss = self.criterion(output, targets)
loss.backward()
if self.args.clip_norm > 0:
coeff = clip_gradient(self.mdl, self.args.clip_norm)
for p in self.mdl.parameters():
p.grad.mul_(coeff)
self.optimizer.step()
return loss.item()
def train(self):
print("Starting training")
self.criterion = nn.CrossEntropyLoss()
print(self.args)
total_loss = 0
num_batches = int(len(self.train_set) / self.args.batch_size) + 1
self.select_optimizer()
for epoch in range(1, self.args.epochs + 1):
t0 = time.clock()
random.shuffle(self.train_set)
print("========================================================================")
losses = []
actual_batch = self.args.batch_size
for i in range(num_batches):
if self.args.model_type in ['TD-RNN']:
loss = self.train_target_batch(i)
else:
loss = self.train_batch(i)
if loss is None :
continue
losses.append(loss)
t1 = time.clock()
print("[Epoch {}] Train Loss={} T={}s".format(epoch, np.mean(losses), t1 - t0))
if epoch > 0 and epoch % self.args.eval == 0:
if self.args.model_type in ['TD-RNN']:
self.evaluate_target(self.test_set)
else:
self.evaluate(self.test_set)
if __name__ == '__main__':
exp = BaseExperiment()
exp.train()