|
| 1 | +## 裸考拿下Oracle AI Foundations Associate认证 |
| 2 | + |
| 3 | +### 作者 |
| 4 | +digoal |
| 5 | + |
| 6 | +### 日期 |
| 7 | +2025-04-26 |
| 8 | + |
| 9 | +### 标签 |
| 10 | +PostgreSQL , PolarDB , DuckDB , Oracle AI 认证 |
| 11 | + |
| 12 | +---- |
| 13 | + |
| 14 | +## 背景 |
| 15 | +和MySQL免费认证一个尿性: [《德说-第327期, MySQL认证免费了, 它的“阴谋”是什么?》](../202504/20250425_04.md) |
| 16 | + |
| 17 | +Oracle AI 认证也免费了, 考完告诉大家一下, 里面其实很多都是暗藏宣传自家OCI的内容, 自行甄别吧. |
| 18 | + |
| 19 | +有了阿里云大模型(LLM) ACA ACP的认证基础, 考Oracle AI Foundations Associate认证非常轻松. 40道题60分钟, 裸考居然98分通过. |
| 20 | + |
| 21 | + |
| 22 | + |
| 23 | + |
| 24 | + |
| 25 | +下面是阿里云 [《大模型(LLM) ACA ACP 通关经验分享》](../202504/20250411_01.md) . ACA ACP考试辅导资料非常有价值, 建议学习. |
| 26 | + |
| 27 | +Oracle AI 认证在Oracle Cloud Infrastructure (OCI) 体系里 |
| 28 | +- https://www.oracle.com/cn/education/certification/#oci |
| 29 | + |
| 30 | +搜索Oracle AI相关的认证 |
| 31 | +- https://mylearn.oracle.com/ou/search/oracle-ai-vector-search-professional |
| 32 | + |
| 33 | +发现有3个AI相关的认证, 其中第一个是免费考的, 地址也有点不太一样exam-unproctored下. |
| 34 | + |
| 35 | +学习视频都免费, 就算不考也可以学习一下, 学到就是自己的. |
| 36 | + |
| 37 | + |
| 38 | +### 1、Oracle Cloud Infrastructure 2025 AI Foundations Associate |
| 39 | + |
| 40 | +免费课程: |
| 41 | + |
| 42 | +https://mylearn.oracle.com/ou/course/oracle-cloud-infrastructure-ai-foundations/147805/223411 |
| 43 | + |
| 44 | +免费考试地址: |
| 45 | + |
| 46 | +https://mylearn.oracle.com/ou/exam-unproctored/oracle-cloud-infrastructure-2025-ai-foundations-associate-1z0-1122-25/147781/241962 |
| 47 | + |
| 48 | +### 2、Oracle Cloud Infrastructure 2025 Generative AI Professional |
| 49 | + |
| 50 | +免费课程: |
| 51 | + |
| 52 | +https://mylearn.oracle.com/ou/learning-path/become-a-oci-generative-ai-professional/147863 |
| 53 | + |
| 54 | +https://mylearn.oracle.com/ou/course/oracle-cloud-infrastructure-generative-ai-professional/147932/243479 |
| 55 | + |
| 56 | +付费考试地址: |
| 57 | + |
| 58 | +https://mylearn.oracle.com/ou/exam/oracle-cloud-infrastructure-2025-generative-ai-professional-1z0-1127-25/35644/147386/241953 |
| 59 | + |
| 60 | +https://education.oracle.com/products/trackp_OCI25GAIOCP |
| 61 | + |
| 62 | +`¥1,671` |
| 63 | +``` |
| 64 | +Format: Multiple Choice |
| 65 | +Duration: 90 Minutes |
| 66 | +Exam Price: ¥1,671 |
| 67 | +Number of Questions: 50 |
| 68 | +Passing Score: 68% |
| 69 | +Validation: This exam has been validated against Oracle Cloud Infrastructure 2025 |
| 70 | +Policy: Cloud Recertification |
| 71 | +``` |
| 72 | + |
| 73 | +考点 |
| 74 | + |
| 75 | +Objectives | % of Exam |
| 76 | +---|--- |
| 77 | + Fundamentals of Large Language Models (LLMs) |20% |
| 78 | + Using OCI Generative AI Service |40% |
| 79 | + Implement RAG using OCI Generative AI service |20% |
| 80 | + Using OCI Generative AI RAG Agents service | 20% |
| 81 | + |
| 82 | + |
| 83 | +Fundamentals of Large Language Models (LLMs) |
| 84 | +- Explain the fundamentals of LLMs |
| 85 | +- Understand LLM architectures |
| 86 | +- Design and use prompts for LLMs |
| 87 | +- Understand LLM fine-tuning |
| 88 | +- Understand the fundamentals of code models, multi-modal, and language agents |
| 89 | + |
| 90 | +Using OCI Generative AI Service |
| 91 | +- Explain the fundamentals of OCI Generative AI service |
| 92 | +- Use pretranined foundational models for Chat and Embedding |
| 93 | +- Create dedicated AI clusters for fine-tuning and inference |
| 94 | +- Fine-tune base models with custom dataset |
| 95 | +- Create and use model endpoints for inference |
| 96 | +- Explore OCI Generative AI security architecture |
| 97 | + |
| 98 | +Implement RAG using OCI Generative AI service |
| 99 | +- Explain OCI Generative AI integration with LangChain and Oracle Database 23ai |
| 100 | +- Explain RAG and RAG workflow |
| 101 | +- Discuss loading, splitting and chunking of documents for RAG |
| 102 | +- Create embeddings of chunks using OCI Generative AI service |
| 103 | +- Store and index embedded chunks in Oracle Database 23ai |
| 104 | +- Describe similarity search and retrieve chunks from Oracle Database 23ai |
| 105 | +- Explain response generation using OCI Generative AI service |
| 106 | + |
| 107 | +Using OCI Generative AI RAG Agents service |
| 108 | +- Explain the fundamentals of OCI Generative AI Agents service |
| 109 | +- Discuss options for creating knowledge bases |
| 110 | +- Create and deploy agents using knowledge bases |
| 111 | +- Invoke deployed RAG agent as a chatbot |
| 112 | + |
| 113 | + |
| 114 | + |
| 115 | +### 3、Oracle AI Vector Search Professional |
| 116 | +免费课程: |
| 117 | + |
| 118 | +https://mylearn.oracle.com/ou/course/oracle-ai-vector-search-fundamentals/140188/223444 |
| 119 | + |
| 120 | +付费考试地址: |
| 121 | + |
| 122 | +https://mylearn.oracle.com/ou/exam/oracle-ai-vector-search-professional-1z0-184-25/35644/144913/236030 |
| 123 | + |
| 124 | +https://education.oracle.com/ouexam-pexam_1z0-184-25/pexam_1Z0-184-25 |
| 125 | + |
| 126 | + |
| 127 | +`¥1,671` |
| 128 | +Format: Multiple Choice |
| 129 | +Duration: 90 Minutes |
| 130 | +Exam Price: ¥1,671 |
| 131 | +Number of Questions: 50 |
| 132 | +Passing Score: 68% |
| 133 | +Validation: This exam is valid for Oracle Database 23ai |
| 134 | + |
| 135 | + |
| 136 | + |
| 137 | +考点: |
| 138 | + |
| 139 | +The following table lists the exam objectives and their weightings. |
| 140 | + |
| 141 | +Objectives | % of Exam |
| 142 | +---|--- |
| 143 | + Understand Vector Fundamentals |20% |
| 144 | + Using Vector Indexes |15% |
| 145 | + Performing Similarity Search |15% |
| 146 | + Using Vector Embeddings |15% |
| 147 | + Building a RAG Application |25% |
| 148 | + Leveraging related AI capabilities |10% |
| 149 | + |
| 150 | +Understand Vector Fundamentals |
| 151 | +- Use Vector Data type for storing embeddings and enabling semantic queries |
| 152 | +- Use Vector Distance Functions and Metrics for AI vector search |
| 153 | +- Perform DML Operations on Vectors |
| 154 | +- Perform DDL Operations on Vectors |
| 155 | + |
| 156 | +Using Vector Indexes |
| 157 | +- Create Vector Indexes to speed up AI vector search |
| 158 | +- Use HNSW Vector Index for search queries |
| 159 | +- Use IVF Vector Index for search queries |
| 160 | + |
| 161 | +Performing Similarity Search |
| 162 | +- Perform Exact Similarity Search |
| 163 | +- Perform approximate similarity search using Vector Indexes |
| 164 | +- Perform Multi-Vector similarity search for multi-document search |
| 165 | + |
| 166 | +Using Vector Embeddings |
| 167 | +- Generate Vector Embeddings outside the Oracle database |
| 168 | +- Generate Vector Embeddings inside the Oracle database |
| 169 | +- Store Vector Embeddings in Oracle database |
| 170 | + |
| 171 | +Building a RAG Application |
| 172 | +- Understand Retrieval-augmented generation (RAG) concepts |
| 173 | +- Create a RAG application using PL/SQL |
| 174 | +- Create a RAG application using Python |
| 175 | + |
| 176 | +Leveraging related AI capabilities |
| 177 | +- Use Exadata AI Storage to accelerate AI vector search |
| 178 | +- Use Select AI with Autonomous to query data using natural language prompts |
| 179 | +- Use SQL Loader for loading vector data |
| 180 | +- Use Oracle Data Pump for loading and unloading vector data |
| 181 | + |
| 182 | + |
| 183 | +#### [期望 PostgreSQL|开源PolarDB 增加什么功能?](https://github.com/digoal/blog/issues/76 "269ac3d1c492e938c0191101c7238216") |
| 184 | + |
| 185 | + |
| 186 | +#### [PolarDB 开源数据库](https://openpolardb.com/home "57258f76c37864c6e6d23383d05714ea") |
| 187 | + |
| 188 | + |
| 189 | +#### [PolarDB 学习图谱](https://www.aliyun.com/database/openpolardb/activity "8642f60e04ed0c814bf9cb9677976bd4") |
| 190 | + |
| 191 | + |
| 192 | +#### [PostgreSQL 解决方案集合](../201706/20170601_02.md "40cff096e9ed7122c512b35d8561d9c8") |
| 193 | + |
| 194 | + |
| 195 | +#### [德哥 / digoal's Github - 公益是一辈子的事.](https://github.com/digoal/blog/blob/master/README.md "22709685feb7cab07d30f30387f0a9ae") |
| 196 | + |
| 197 | + |
| 198 | +#### [About 德哥](https://github.com/digoal/blog/blob/master/me/readme.md "a37735981e7704886ffd590565582dd0") |
| 199 | + |
| 200 | + |
| 201 | + |
| 202 | + |
0 commit comments