Skip to content

Commit 474c33b

Browse files
author
digoal
committed
new doc
1 parent 91d9b00 commit 474c33b

File tree

6 files changed

+205
-1
lines changed

6 files changed

+205
-1
lines changed

202504/20250426_05.md

Lines changed: 1 addition & 1 deletion
Original file line numberDiff line numberDiff line change
@@ -4,7 +4,7 @@
44
digoal
55

66
### 日期
7-
2025-04-25
7+
2025-04-26
88

99
### 标签
1010
PostgreSQL , PolarDB , DuckDB , RAG , 佐证 , AI , 大模型 , 胡编乱造 , 证明 , 证伪

202504/20250426_06.md

Lines changed: 202 additions & 0 deletions
Original file line numberDiff line numberDiff line change
@@ -0,0 +1,202 @@
1+
## 裸考拿下Oracle AI Foundations Associate认证
2+
3+
### 作者
4+
digoal
5+
6+
### 日期
7+
2025-04-26
8+
9+
### 标签
10+
PostgreSQL , PolarDB , DuckDB , Oracle AI 认证
11+
12+
----
13+
14+
## 背景
15+
和MySQL免费认证一个尿性: [《德说-第327期, MySQL认证免费了, 它的“阴谋”是什么?》](../202504/20250425_04.md)
16+
17+
Oracle AI 认证也免费了, 考完告诉大家一下, 里面其实很多都是暗藏宣传自家OCI的内容, 自行甄别吧.
18+
19+
有了阿里云大模型(LLM) ACA ACP的认证基础, 考Oracle AI Foundations Associate认证非常轻松. 40道题60分钟, 裸考居然98分通过.
20+
21+
![pic](20250426_06_pic_002.jpg)
22+
23+
![pic](20250426_06_pic_001.jpg)
24+
25+
下面是阿里云 [《大模型(LLM) ACA ACP 通关经验分享》](../202504/20250411_01.md) . ACA ACP考试辅导资料非常有价值, 建议学习.
26+
27+
Oracle AI 认证在Oracle Cloud Infrastructure (OCI) 体系里
28+
- https://www.oracle.com/cn/education/certification/#oci
29+
30+
搜索Oracle AI相关的认证
31+
- https://mylearn.oracle.com/ou/search/oracle-ai-vector-search-professional
32+
33+
发现有3个AI相关的认证, 其中第一个是免费考的, 地址也有点不太一样exam-unproctored下.
34+
35+
学习视频都免费, 就算不考也可以学习一下, 学到就是自己的.
36+
37+
38+
### 1、Oracle Cloud Infrastructure 2025 AI Foundations Associate
39+
40+
免费课程:
41+
42+
https://mylearn.oracle.com/ou/course/oracle-cloud-infrastructure-ai-foundations/147805/223411
43+
44+
免费考试地址:
45+
46+
https://mylearn.oracle.com/ou/exam-unproctored/oracle-cloud-infrastructure-2025-ai-foundations-associate-1z0-1122-25/147781/241962
47+
48+
### 2、Oracle Cloud Infrastructure 2025 Generative AI Professional
49+
50+
免费课程:
51+
52+
https://mylearn.oracle.com/ou/learning-path/become-a-oci-generative-ai-professional/147863
53+
54+
https://mylearn.oracle.com/ou/course/oracle-cloud-infrastructure-generative-ai-professional/147932/243479
55+
56+
付费考试地址:
57+
58+
https://mylearn.oracle.com/ou/exam/oracle-cloud-infrastructure-2025-generative-ai-professional-1z0-1127-25/35644/147386/241953
59+
60+
https://education.oracle.com/products/trackp_OCI25GAIOCP
61+
62+
`¥1,671`
63+
```
64+
Format: Multiple Choice
65+
Duration: 90 Minutes
66+
Exam Price: ¥1,671
67+
Number of Questions: 50
68+
Passing Score: 68%
69+
Validation: This exam has been validated against Oracle Cloud Infrastructure 2025
70+
Policy: Cloud Recertification
71+
```
72+
73+
考点
74+
75+
Objectives | % of Exam
76+
---|---
77+
Fundamentals of Large Language Models (LLMs) |20%
78+
Using OCI Generative AI Service |40%
79+
Implement RAG using OCI Generative AI service |20%
80+
Using OCI Generative AI RAG Agents service | 20%
81+
82+
83+
Fundamentals of Large Language Models (LLMs)
84+
- Explain the fundamentals of LLMs
85+
- Understand LLM architectures
86+
- Design and use prompts for LLMs
87+
- Understand LLM fine-tuning
88+
- Understand the fundamentals of code models, multi-modal, and language agents
89+
90+
Using OCI Generative AI Service
91+
- Explain the fundamentals of OCI Generative AI service
92+
- Use pretranined foundational models for Chat and Embedding
93+
- Create dedicated AI clusters for fine-tuning and inference
94+
- Fine-tune base models with custom dataset
95+
- Create and use model endpoints for inference
96+
- Explore OCI Generative AI security architecture
97+
98+
Implement RAG using OCI Generative AI service
99+
- Explain OCI Generative AI integration with LangChain and Oracle Database 23ai
100+
- Explain RAG and RAG workflow
101+
- Discuss loading, splitting and chunking of documents for RAG
102+
- Create embeddings of chunks using OCI Generative AI service
103+
- Store and index embedded chunks in Oracle Database 23ai
104+
- Describe similarity search and retrieve chunks from Oracle Database 23ai
105+
- Explain response generation using OCI Generative AI service
106+
107+
Using OCI Generative AI RAG Agents service
108+
- Explain the fundamentals of OCI Generative AI Agents service
109+
- Discuss options for creating knowledge bases
110+
- Create and deploy agents using knowledge bases
111+
- Invoke deployed RAG agent as a chatbot
112+
113+
114+
115+
### 3、Oracle AI Vector Search Professional
116+
免费课程:
117+
118+
https://mylearn.oracle.com/ou/course/oracle-ai-vector-search-fundamentals/140188/223444
119+
120+
付费考试地址:
121+
122+
https://mylearn.oracle.com/ou/exam/oracle-ai-vector-search-professional-1z0-184-25/35644/144913/236030
123+
124+
https://education.oracle.com/ouexam-pexam_1z0-184-25/pexam_1Z0-184-25
125+
126+
127+
`¥1,671`
128+
Format: Multiple Choice
129+
Duration: 90 Minutes
130+
Exam Price: ¥1,671
131+
Number of Questions: 50
132+
Passing Score: 68%
133+
Validation: This exam is valid for Oracle Database 23ai
134+
135+
136+
137+
考点:
138+
139+
The following table lists the exam objectives and their weightings.
140+
141+
Objectives | % of Exam
142+
---|---
143+
Understand Vector Fundamentals |20%
144+
Using Vector Indexes |15%
145+
Performing Similarity Search |15%
146+
Using Vector Embeddings |15%
147+
Building a RAG Application |25%
148+
Leveraging related AI capabilities |10%
149+
150+
Understand Vector Fundamentals
151+
- Use Vector Data type for storing embeddings and enabling semantic queries
152+
- Use Vector Distance Functions and Metrics for AI vector search
153+
- Perform DML Operations on Vectors
154+
- Perform DDL Operations on Vectors
155+
156+
Using Vector Indexes
157+
- Create Vector Indexes to speed up AI vector search
158+
- Use HNSW Vector Index for search queries
159+
- Use IVF Vector Index for search queries
160+
161+
Performing Similarity Search
162+
- Perform Exact Similarity Search
163+
- Perform approximate similarity search using Vector Indexes
164+
- Perform Multi-Vector similarity search for multi-document search
165+
166+
Using Vector Embeddings
167+
- Generate Vector Embeddings outside the Oracle database
168+
- Generate Vector Embeddings inside the Oracle database
169+
- Store Vector Embeddings in Oracle database
170+
171+
Building a RAG Application
172+
- Understand Retrieval-augmented generation (RAG) concepts
173+
- Create a RAG application using PL/SQL
174+
- Create a RAG application using Python
175+
176+
Leveraging related AI capabilities
177+
- Use Exadata AI Storage to accelerate AI vector search
178+
- Use Select AI with Autonomous to query data using natural language prompts
179+
- Use SQL Loader for loading vector data
180+
- Use Oracle Data Pump for loading and unloading vector data
181+
182+
183+
#### [期望 PostgreSQL|开源PolarDB 增加什么功能?](https://github.com/digoal/blog/issues/76 "269ac3d1c492e938c0191101c7238216")
184+
185+
186+
#### [PolarDB 开源数据库](https://openpolardb.com/home "57258f76c37864c6e6d23383d05714ea")
187+
188+
189+
#### [PolarDB 学习图谱](https://www.aliyun.com/database/openpolardb/activity "8642f60e04ed0c814bf9cb9677976bd4")
190+
191+
192+
#### [PostgreSQL 解决方案集合](../201706/20170601_02.md "40cff096e9ed7122c512b35d8561d9c8")
193+
194+
195+
#### [德哥 / digoal's Github - 公益是一辈子的事.](https://github.com/digoal/blog/blob/master/README.md "22709685feb7cab07d30f30387f0a9ae")
196+
197+
198+
#### [About 德哥](https://github.com/digoal/blog/blob/master/me/readme.md "a37735981e7704886ffd590565582dd0")
199+
200+
201+
![digoal's wechat](../pic/digoal_weixin.jpg "f7ad92eeba24523fd47a6e1a0e691b59")
202+

202504/20250426_06_pic_001.jpg

515 KB
Loading

202504/20250426_06_pic_002.jpg

89.8 KB
Loading

202504/readme.md

Lines changed: 1 addition & 0 deletions
Original file line numberDiff line numberDiff line change
@@ -2,6 +2,7 @@
22

33
### 文章列表
44
----
5+
##### 20250426_06.md [《裸考拿下Oracle AI Foundations Associate认证》](20250426_06.md)
56
##### 20250426_05.md [《德说-第329期, RAG逆向应用 | 谷歌Gemini实现AI回复结果核查(证明或证伪)功能》](20250426_05.md)
67
##### 20250426_04.md [《AI论文解读 | BM25 Query Augmentation Learned End-to-End》](20250426_04.md)
78
##### 20250426_03.md [《AI论文解读 | Injecting the BM25 Score as Text Improves BERT-Based Re-rankers》](20250426_03.md)

README.md

Lines changed: 1 addition & 0 deletions
Original file line numberDiff line numberDiff line change
@@ -100,6 +100,7 @@ digoal's|PostgreSQL|文章|归类
100100

101101
### 六、所有文档如下
102102
----
103+
##### 202504/20250426_06.md [《裸考拿下Oracle AI Foundations Associate认证》](202504/20250426_06.md)
103104
##### 202504/20250426_05.md [《德说-第329期, RAG逆向应用 | 谷歌Gemini实现AI回复结果核查(证明或证伪)功能》](202504/20250426_05.md)
104105
##### 202504/20250426_04.md [《AI论文解读 | BM25 Query Augmentation Learned End-to-End》](202504/20250426_04.md)
105106
##### 202504/20250426_03.md [《AI论文解读 | Injecting the BM25 Score as Text Improves BERT-Based Re-rankers》](202504/20250426_03.md)

0 commit comments

Comments
 (0)