Skip to content

Latest commit

 

History

History
320 lines (233 loc) · 10.4 KB

Advanced Integral Calculus in Machine Learning with Python.md

File metadata and controls

320 lines (233 loc) · 10.4 KB

Advanced Integral Calculus in Machine Learning with Python

Slide 1: Advanced Integral Calculus in Machine Learning and AI

Integral calculus plays a crucial role in various aspects of machine learning and artificial intelligence. It forms the foundation for many optimization algorithms, probability distributions, and neural network architectures. In this presentation, we'll explore how advanced integral calculus concepts are applied in ML and AI, with practical Python implementations.

import numpy as np
import matplotlib.pyplot as plt

def plot_function(f, a, b, n=1000):
    x = np.linspace(a, b, n)
    y = f(x)
    plt.plot(x, y)
    plt.fill_between(x, 0, y, alpha=0.3)
    plt.title("Visualization of Integration")
    plt.show()

def f(x):
    return np.sin(x) * np.exp(-x/10)

plot_function(f, 0, 10)

Slide 2: Numerical Integration: Trapezoidal Rule

The trapezoidal rule is a simple yet effective method for numerical integration. It approximates the area under a curve by dividing it into trapezoids. This technique is often used in machine learning when closed-form solutions are not available or are computationally expensive.

def trapezoidal_rule(f, a, b, n):
    h = (b - a) / n
    x = np.linspace(a, b, n+1)
    y = f(x)
    return h * (0.5 * y[0] + 0.5 * y[-1] + np.sum(y[1:-1]))

result = trapezoidal_rule(f, 0, 10, 1000)
print(f"Integral approximation: {result}")

Slide 3: Monte Carlo Integration

Monte Carlo integration is a probabilistic method for numerical integration, particularly useful in high-dimensional spaces. It's widely used in machine learning for approximating complex integrals in Bayesian inference and reinforcement learning.

def monte_carlo_integration(f, a, b, n):
    x = np.random.uniform(a, b, n)
    y = f(x)
    return (b - a) * np.mean(y)

result = monte_carlo_integration(f, 0, 10, 100000)
print(f"Monte Carlo integral approximation: {result}")

Slide 4: Gradient Descent Optimization

Integral calculus is fundamental in optimization algorithms like gradient descent. The gradient, which is the multivariable generalization of the derivative, guides the optimization process towards the minimum of a loss function.

def gradient_descent(f, df, x0, learning_rate, num_iterations):
    x = x0
    for _ in range(num_iterations):
        gradient = df(x)
        x = x - learning_rate * gradient
    return x

def f(x):
    return x**2 + 2*x + 1

def df(x):
    return 2*x + 2

minimum = gradient_descent(f, df, x0=0, learning_rate=0.1, num_iterations=100)
print(f"Minimum found at x = {minimum}")

Slide 5: Probability Density Functions

Integral calculus is essential in probability theory and statistics, which are core to many machine learning algorithms. The integral of a probability density function (PDF) over an interval gives the probability of a random variable falling within that interval.

from scipy.stats import norm

def plot_normal_pdf(mu, sigma):
    x = np.linspace(mu - 4*sigma, mu + 4*sigma, 1000)
    y = norm.pdf(x, mu, sigma)
    plt.plot(x, y)
    plt.fill_between(x, 0, y, alpha=0.3)
    plt.title(f"Normal Distribution (μ={mu}, σ={sigma})")
    plt.show()

plot_normal_pdf(0, 1)

Slide 6: Cumulative Distribution Functions

The cumulative distribution function (CDF) is the integral of the probability density function. It's used in various machine learning applications, including probability calibration and anomaly detection.

def plot_normal_cdf(mu, sigma):
    x = np.linspace(mu - 4*sigma, mu + 4*sigma, 1000)
    y = norm.cdf(x, mu, sigma)
    plt.plot(x, y)
    plt.title(f"Normal CDF (μ={mu}, σ={sigma})")
    plt.show()

plot_normal_cdf(0, 1)

Slide 7: Expectation and Variance

Expectation and variance, fundamental concepts in probability theory, are defined using integrals. These concepts are crucial in machine learning for understanding and analyzing model performance and data distributions.

def expectation(x, p):
    return np.sum(x * p)

def variance(x, p):
    mu = expectation(x, p)
    return expectation((x - mu)**2, p)

x = np.array([1, 2, 3, 4, 5])
p = np.array([0.1, 0.2, 0.3, 0.2, 0.2])

print(f"Expectation: {expectation(x, p)}")
print(f"Variance: {variance(x, p)}")

Slide 8: Entropy and Cross-Entropy

Entropy and cross-entropy are integral-based concepts used in information theory and machine learning, particularly in classification tasks and neural network training.

def entropy(p):
    return -np.sum(p * np.log2(p))

def cross_entropy(p, q):
    return -np.sum(p * np.log2(q))

p = np.array([0.3, 0.7])
q = np.array([0.4, 0.6])

print(f"Entropy of p: {entropy(p)}")
print(f"Cross-entropy of p and q: {cross_entropy(p, q)}")

Slide 9: Activation Functions in Neural Networks

Integral calculus is used in deriving and understanding activation functions in neural networks. The sigmoid function, for example, is defined as the integral of a scaled logistic distribution.

def sigmoid(x):
    return 1 / (1 + np.exp(-x))

def plot_sigmoid():
    x = np.linspace(-10, 10, 1000)
    y = sigmoid(x)
    plt.plot(x, y)
    plt.title("Sigmoid Activation Function")
    plt.show()

plot_sigmoid()

Slide 10: Backpropagation in Neural Networks

Backpropagation, the cornerstone of neural network training, relies heavily on the chain rule from calculus. It involves computing gradients through the network to update weights and biases.

def forward_pass(x, w1, w2):
    h = sigmoid(np.dot(x, w1))
    y = sigmoid(np.dot(h, w2))
    return h, y

def backward_pass(x, y, h, w2, target):
    d_y = y - target
    d_h = np.dot(d_y, w2.T) * h * (1 - h)
    grad_w2 = np.outer(h, d_y)
    grad_w1 = np.outer(x, d_h)
    return grad_w1, grad_w2

# Example usage
x = np.array([0.5, 0.3])
w1 = np.random.randn(2, 3)
w2 = np.random.randn(3, 1)
target = np.array([0.7])

h, y = forward_pass(x, w1, w2)
grad_w1, grad_w2 = backward_pass(x, y, h, w2, target)

Slide 11: Kernel Methods and Support Vector Machines

Integral transforms, such as the Fourier transform, play a role in kernel methods used in support vector machines (SVMs) and other machine learning algorithms. These methods implicitly map data to high-dimensional spaces for improved separability.

from sklearn import svm
from sklearn.datasets import make_moons

X, y = make_moons(n_samples=100, noise=0.15)

clf = svm.SVC(kernel='rbf')
clf.fit(X, y)

def plot_decision_boundary(clf, X, y):
    xx, yy = np.meshgrid(np.linspace(X[:, 0].min()-1, X[:, 0].max()+1, 100),
                         np.linspace(X[:, 1].min()-1, X[:, 1].max()+1, 100))
    Z = clf.predict(np.c_[xx.ravel(), yy.ravel()])
    Z = Z.reshape(xx.shape)
    plt.contourf(xx, yy, Z, alpha=0.4)
    plt.scatter(X[:, 0], X[:, 1], c=y, alpha=0.8)
    plt.title("SVM with RBF Kernel")
    plt.show()

plot_decision_boundary(clf, X, y)

Slide 12: Bayesian Inference and Markov Chain Monte Carlo

Integral calculus is crucial in Bayesian inference, particularly in computing posterior distributions. Markov Chain Monte Carlo (MCMC) methods are often used to approximate these integrals in high-dimensional spaces.

import pymc3 as pm

def bayesian_linear_regression(X, y):
    with pm.Model() as model:
        # Priors
        alpha = pm.Normal('alpha', mu=0, sd=10)
        beta = pm.Normal('beta', mu=0, sd=10)
        sigma = pm.HalfNormal('sigma', sd=1)
        
        # Linear model
        mu = alpha + beta * X
        
        # Likelihood
        Y_obs = pm.Normal('Y_obs', mu=mu, sd=sigma, observed=y)
        
        # Inference
        trace = pm.sample(2000, return_inferencedata=False)
    
    return trace

# Generate some example data
X = np.random.randn(100)
y = 2 + 0.5 * X + np.random.randn(100) * 0.5

trace = bayesian_linear_regression(X, y)
pm.plot_posterior(trace)
plt.show()

Slide 13: Reinforcement Learning and the Bellman Equation

The Bellman equation, which involves integrals over state-action spaces, is fundamental in reinforcement learning. It's used to compute optimal policies and value functions in various RL algorithms.

import gym

env = gym.make('FrozenLake-v1')

def value_iteration(env, gamma=0.99, theta=1e-8):
    V = np.zeros(env.observation_space.n)
    while True:
        delta = 0
        for s in range(env.observation_space.n):
            v = V[s]
            V[s] = max([sum([p * (r + gamma * V[s_]) for p, s_, r, _ in env.P[s][a]])
                        for a in range(env.action_space.n)])
            delta = max(delta, abs(v - V[s]))
        if delta < theta:
            break
    return V

V = value_iteration(env)
print("Optimal Value Function:")
print(V.reshape(4, 4))

Slide 14: Gaussian Processes and Kernel Integration

Gaussian processes, used in probabilistic machine learning, involve kernel functions and their integrals. These methods provide a way to perform Bayesian inference over functions.

from sklearn.gaussian_process import GaussianProcessRegressor
from sklearn.gaussian_process.kernels import RBF, ConstantKernel as C

def plot_gp(X, y, X_test):
    kernel = C(1.0, (1e-3, 1e3)) * RBF(10, (1e-2, 1e2))
    gp = GaussianProcessRegressor(kernel=kernel, n_restarts_optimizer=9)
    gp.fit(X, y)
    
    mean_prediction, std_prediction = gp.predict(X_test, return_std=True)
    
    plt.plot(X, y, 'r.', markersize=10, label='Observations')
    plt.plot(X_test, mean_prediction, 'b-', label='Prediction')
    plt.fill_between(X_test.ravel(), 
                     mean_prediction - 1.96 * std_prediction,
                     mean_prediction + 1.96 * std_prediction,
                     alpha=0.2)
    plt.legend()
    plt.title('Gaussian Process Regression')
    plt.show()

X = np.array([1, 3, 5, 6, 7, 8]).reshape(-1, 1)
y = np.sin(X).ravel()
X_test = np.linspace(0, 10, 1000).reshape(-1, 1)

plot_gp(X, y, X_test)

Slide 15: Additional Resources

For further exploration of advanced integral calculus in machine learning and AI, consider these peer-reviewed articles from arXiv.org:

  1. "A Survey of Deep Learning Techniques for Neural Machine Translation" (arXiv:1703.01619)
  2. "Gaussian Processes for Machine Learning" (arXiv:1505.02965)
  3. "Deep Reinforcement Learning: An Overview" (arXiv:1701.07274)
  4. "A Tutorial on Bayesian Optimization" (arXiv:1807.02811)
  5. "Variational Inference: A Review for Statisticians" (arXiv:1601.00670)

These resources provide in-depth coverage of various topics discussed in this presentation, offering mathematical foundations and advanced applications in machine learning and AI.