-
Notifications
You must be signed in to change notification settings - Fork 5
/
Copy pathviterbi.py
85 lines (68 loc) · 2.17 KB
/
viterbi.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
import logging
import math
logger = logging.getLogger(__name__)
# Helps visualize the steps of Viterbi.
def log_dptable(V):
s = " " + " ".join(("%7d" % i) for i in range(len(V))) + "\n"
for y in V[0]:
s += "%.15s: " % y
s += " ".join("%.7s" % ("%f" % v[y]) for v in V)
s += "\n"
logger.debug('%s', s)
def viterbi(obs, states, start_p, trans_p, emit_p):
states = list(states)
V = [{}]
path = {}
# Initialize base cases (t == 0)
for y in states:
V[0][y] = math.log10(start_p(y)) + math.log10(emit_p(y, obs[0]))
path[y] = [y]
# alternative Python 2.7+ initialization syntax
# V = [{y:(start_p[y] * emit_p[y][obs[0]]) for y in states}]
# path = {y:[y] for y in states}
# Run Viterbi for t > 0
for t in range(1, len(obs)):
logger.info('---- %s%%', int(100.0 * (float(t) / len(obs))))
V.append({})
newpath = {}
for i, y in enumerate(states):
if i % 500 == 0:
logger.debug('%s %s', i, y)
candidates = [(V[t - 1][y0] +
math.log10(trans_p(y0, y)) +
math.log10(emit_p(y, obs[t])), y0)
for y0 in states]
(prob, state) = max(candidates)
V[t][y] = prob
newpath[y] = path[state] + [y]
# Don't need to remember the old paths
path = newpath
logger.info('---- 100%%')
log_dptable(V)
(prob, state) = max((V[t][y], y) for y in states)
return (10.0 ** prob, path[state])
def example():
states = ('Healthy', 'Fever')
observations = ('normal', 'cold', 'dizzy')
start_probability = {'Healthy': 0.6, 'Fever': 0.4}
transition_probability = {
'Healthy': {'Healthy': 0.7, 'Fever': 0.3},
'Fever': {'Healthy': 0.4, 'Fever': 0.6},
}
emission_probability = {
'Healthy': {'normal': 0.5, 'cold': 0.4, 'dizzy': 0.1},
'Fever': {'normal': 0.1, 'cold': 0.3, 'dizzy': 0.6},
}
def start_p(s):
return start_probability[s]
def transition_p(s, n):
return transition_probability[s][n]
def emission_p(s, o):
return emission_probability[s][o]
return viterbi(observations,
states,
start_p,
transition_p,
emission_p)
if __name__ == '__main__':
example()