forked from Edresson/VoiceSplit
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathtest_all_checkpoints.py
130 lines (105 loc) · 4.84 KB
/
test_all_checkpoints.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
import os
import math
import torch
import torch.nn as nn
import traceback
from glob import glob
import time
import numpy as np
import tqdm
import argparse
from utils.generic_utils import load_config, load_config_from_str
from utils.generic_utils import set_init_dict
from utils.tensorboard import TensorboardWriter
from utils.dataset import test_dataloader, eval_dataloader
from utils.generic_utils import validation, PowerLaw_Compressed_Loss, SiSNR_With_Pit
from models.voicefilter.model import VoiceFilter
from models.voicesplit.model import VoiceSplit
from utils.audio_processor import WrapperAudioProcessor as AudioProcessor
from shutil import copyfile
import yaml
def test(args, log_dir, checkpoint_path, testloader, tensorboard, c, model_name, ap, cuda=True):
if(model_name == 'voicefilter'):
model = VoiceFilter(c)
elif(model_name == 'voicesplit'):
model = VoiceSplit(c)
else:
raise Exception(" The model '"+model_name+"' is not suported")
if c.train_config['optimizer'] == 'adam':
optimizer = torch.optim.Adam(model.parameters(),
lr=c.train_config['learning_rate'])
else:
raise Exception("The %s not is a optimizer supported" % c.train['optimizer'])
step = 0
if checkpoint_path is not None:
try:
checkpoint = torch.load(checkpoint_path, map_location='cpu')
model.load_state_dict(checkpoint['model'])
if cuda:
model = model.cuda()
except:
raise Exception("Fail in load checkpoint, you need use this configs: %s" %checkpoint['config_str'])
try:
optimizer.load_state_dict(checkpoint['optimizer'])
except:
print(" > Optimizer state is not loaded from checkpoint path, you see this mybe you change the optimizer")
step = checkpoint['step']
else:
raise Exception("You need specific a checkpoint for test")
# convert model from cuda
if cuda:
model = model.cuda()
# definitions for power-law compressed loss
power = c.loss['power']
complex_ratio = c.loss['complex_loss_ratio']
if c.loss['loss_name'] == 'power_law_compression':
criterion = PowerLaw_Compressed_Loss(power, complex_ratio)
elif c.loss['loss_name'] == 'si_snr':
criterion = SiSNR_With_Pit()
else:
raise Exception(" The loss '"+c.loss['loss_name']+"' is not suported")
return validation(criterion, ap, model, testloader, tensorboard, step, cuda=cuda, loss_name=c.loss['loss_name'], test=True)
if __name__ == '__main__':
parser = argparse.ArgumentParser()
parser.add_argument('-d', '--dataset_dir', type=str, default='./',
help="Root directory of run.")
parser.add_argument('-c', '--config_path', type=str, required=False, default=None,
help="json file with configurations")
parser.add_argument('--checkpoints_path', type=str, required=True,
help="path of checkpoint pt file, for continue training")
args = parser.parse_args()
all_checkpoints = sorted(glob(os.path.join(args.checkpoints_path, '*.pt')))
#print(all_checkpoints, os.listdir(args.checkpoints_path))
if args.config_path:
c = load_config(args.config_path)
else: #load config in checkpoint
checkpoint = torch.load(all_checkpoints[0], map_location='cpu')
c = load_config_from_str(checkpoint['config_str'])
ap = AudioProcessor(c.audio)
log_path = os.path.join(c.train_config['logs_path'], c.model_name)
audio_config = c.audio[c.audio['backend']]
tensorboard = TensorboardWriter(log_path, audio_config)
# set test dataset dir
c.dataset['test_dir'] = args.dataset_dir
# set batchsize = 1
c.train_config['batch_size'] = 1
test_dataloader = eval_dataloader(c, ap)
print(c.dataset['format'])
best_sdr = 0
best_loss = 999999999
best_sdr_checkpoint = ''
best_loss_checkpoint = ''
sdrs_checkpoint = []
for i in tqdm.tqdm(range(len(all_checkpoints))):
checkpoint = all_checkpoints[i]
mean_loss, mean_sdr = test(args, log_path, checkpoint, test_dataloader, tensorboard, c, c.model_name, ap, cuda=True)
sdrs_checkpoint.append([mean_sdr, mean_loss, checkpoint])
if mean_loss < best_loss:
best_loss = mean_loss
best_loss_checkpoint = checkpoint
if mean_sdr > best_sdr:
best_sdr = mean_sdr
best_sdr_checkpoint = checkpoint
print("Best SDR checkpoint is: ", best_sdr_checkpoint, "Best Loss checkpoint is: ", best_loss_checkpoint, "Best SDR:",best_sdr, "Best Loss:", best_loss)
copyfile(best_sdr_checkpoint, os.path.join(args.checkpoints_path,'best_checkpoint.pt'))
np.save(os.path.join(args.checkpoints_path,"SDRs_loss_validation_with_VCTK_best_SDR_is_"+str(best_sdr)+".np"), np.array(sdrs_checkpoint))