forked from Edresson/VoiceSplit
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathtest.py
100 lines (79 loc) · 3.65 KB
/
test.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
import os
import math
import torch
import torch.nn as nn
import traceback
import time
import numpy as np
import argparse
from utils.generic_utils import load_config, load_config_from_str
from utils.generic_utils import set_init_dict
from utils.tensorboard import TensorboardWriter
from utils.dataset import test_dataloader
from utils.generic_utils import validation, PowerLaw_Compressed_Loss, SiSNR_With_Pit
from models.voicefilter.model import VoiceFilter
from models.voicesplit.model import VoiceSplit
from utils.audio_processor import WrapperAudioProcessor as AudioProcessor
def test(args, log_dir, checkpoint_path, testloader, tensorboard, c, model_name, ap, cuda=True):
if(model_name == 'voicefilter'):
model = VoiceFilter(c)
elif(model_name == 'voicesplit'):
model = VoiceSplit(c)
else:
raise Exception(" The model '"+model_name+"' is not suported")
if c.train_config['optimizer'] == 'adam':
optimizer = torch.optim.Adam(model.parameters(),
lr=c.train_config['learning_rate'])
else:
raise Exception("The %s not is a optimizer supported" % c.train['optimizer'])
step = 0
if checkpoint_path is not None:
try:
checkpoint = torch.load(checkpoint_path, map_location='cpu')
model.load_state_dict(checkpoint['model'])
if cuda:
model = model.cuda()
except:
raise Exception("Fail in load checkpoint, you need use this configs: %s" %checkpoint['config_str'])
try:
optimizer.load_state_dict(checkpoint['optimizer'])
except:
print(" > Optimizer state is not loaded from checkpoint path, you see this mybe you change the optimizer")
step = checkpoint['step']
else:
raise Exception("You need specific a checkpoint for test")
# convert model from cuda
if cuda:
model = model.cuda()
# definitions for power-law compressed loss
power = c.loss['power']
complex_ratio = c.loss['complex_loss_ratio']
if c.loss['loss_name'] == 'power_law_compression':
criterion = PowerLaw_Compressed_Loss(power, complex_ratio)
elif c.loss['loss_name'] == 'si_snr':
criterion = SiSNR_With_Pit()
else:
raise Exception(" The loss '"+c.loss['loss_name']+"' is not suported")
return validation(criterion, ap, model, testloader, tensorboard, step, cuda=cuda, loss_name=c.loss['loss_name'], test=True)
if __name__ == '__main__':
parser = argparse.ArgumentParser()
parser.add_argument('-d', '--dataset_dir', type=str, default='./',
help="Root directory of run.")
parser.add_argument('-c', '--config_path', type=str, required=False, default=None,
help="json file with configurations")
parser.add_argument('--checkpoint_path', type=str, required=True,
help="path of checkpoint pt file, for continue training")
args = parser.parse_args()
if args.config_path:
c = load_config(args.config_path)
else: #load config in checkpoint
checkpoint = torch.load(args.checkpoint_path, map_location='cpu')
c = load_config_from_str(checkpoint['config_str'])
ap = AudioProcessor(c.audio)
log_path = os.path.join(c.train_config['logs_path'], c.model_name)
audio_config = c.audio[c.audio['backend']]
tensorboard = TensorboardWriter(log_path, audio_config)
# set test dataset dir
c.dataset['test_dir'] = args.dataset_dir
test_dataloader = test_dataloader(c, ap)
mean_loss, mean_sdr = test(args, log_path, args.checkpoint_path, test_dataloader, tensorboard, c, c.model_name, ap, cuda=True)