-
Notifications
You must be signed in to change notification settings - Fork 0
/
unity_env_wrapper.py
53 lines (42 loc) · 1.7 KB
/
unity_env_wrapper.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
import numpy as np
class EnvSingleWrapper:
def __init__(self, env, train_mode=False):
self.env = env
self.brain_name = env.brain_names[0]
self.train_mode = train_mode
brain = env.brains[self.brain_name]
self.action_size = brain.vector_action_space_size
state = self.reset()
self.state_size = state.shape[1]
self.num_agents = 1
def reset(self):
env_info = self.env.reset(train_mode=self.train_mode)[self.brain_name]
states = env_info.vector_observations
return states
def step(self, actions):
env_info = self.env.step(actions)[self.brain_name]
next_states = env_info.vector_observations
rewards = env_info.rewards
dones = env_info.local_done
return next_states, rewards, dones
class EnvMultipleWrapper:
def __init__(self, env, train_mode=False):
self.env = env
self.brain_name = env.brain_names[0]
self.train_mode = train_mode
brain = env.brains[self.brain_name]
self.action_size = brain.vector_action_space_size
env_info = self.env.reset(train_mode=self.train_mode)[self.brain_name]
states = env_info.vector_observations
self.state_size = states.shape[1]
self.num_agents = len(env_info.agents)
def reset(self):
env_info = self.env.reset(train_mode=self.train_mode)[self.brain_name]
states = env_info.vector_observations
return states
def step(self, actions):
env_info = self.env.step(actions)[self.brain_name]
next_states = env_info.vector_observations
rewards = env_info.rewards
dones = env_info.local_done
return next_states, rewards, dones