-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathmodel-transfer-functions.R
133 lines (87 loc) · 3.63 KB
/
model-transfer-functions.R
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
#script for conducting model transfer analyses###
#function to run nbevGARCH models
rolling_mod=function(split) {
analysis_set= analysis(split) #get dataframe
fit_model= tsglm(analysis_set[,"abundance"], model = list(past_obs=c(1,12)),
distr = "nbinom",
xreg = analysis_set[,3:5],
link = "log")
}
#function to generate predictions for each model split
get_preds=function(split, model,y_source) {
analysis_set= analysis(split) #get training data
assessment_set=assessment(split) #get testing data
model$ts = y_source$ts #select the initial condition from matching model
model$response = y_source$response
preds=predict(model, n.ahead=12, newxreg= assessment_set[,3:5])$pred
}
#function for evaluating model
mod_evals_same=function(split, preds_same) {
assessment_set= assessment(split) #get validation data
holdout= assessment_set[,"abundance"] #select relevant column in dataframe
preds_same= preds_same
rmse1_same=pmap(list(holdout[1], preds_same[1]), Metrics::rmse)
rmse6_same=pmap(list(holdout[6], preds_same[6]), Metrics::rmse)
rmse12_same=pmap(list(holdout[12], preds_same[12]), Metrics::rmse)
rmse_same=cbind(rmse1_same, rmse6_same, rmse12_same)
}
mod_evals_switch=function(split, preds_switch) {
assessment_set= assessment(split) #get validation data
holdout= assessment_set[,"abundance"] #select relevant column in dataframe
preds_switch= preds_switch
rmse1_switch=pmap(list(holdout[1], preds_switch[1]), Metrics::rmse)
rmse6_switch=pmap(list(holdout[6], preds_switch[6]), Metrics::rmse)
rmse12_switch=pmap(list(holdout[12], preds_switch[12]), Metrics::rmse)
rmse_switch=cbind(rmse1_switch, rmse6_switch, rmse12_switch)
}
#function for plotting forecasts
get_dat_same=function(split, preds_same) {
assessment_set= assessment(split) #get validation data
holdout= assessment_set[,"abundance"]
moon= assessment_set[,"newmoonnumber"]
preds_same= preds_same
hp=cbind(moon, holdout, preds_same)
}
get_dat_switch=function(split, preds_switch) {
assessment_set= assessment(split) #get validation data
holdout= assessment_set[,"abundance"]
moon= assessment_set[,"newmoonnumber"]
preds_switch= preds_switch
hp=cbind(moon, holdout, preds_switch)
}
#function for plotting forecast evals
get_evals1_diff=function(split, evals_same, evals_switch, id) {
assessment_set= assessment(split) #get validation data
newmoon= assessment_set[,"newmoonnumber"][1]
score_same=as.vector(as.numeric(evals_same[1]))
score_switch=as.vector(as.numeric(evals_switch[1]))
score_diff=score_same-score_switch
id=id
h=1
hp=cbind(newmoon,id, h, score_same, score_switch, score_diff)
}
get_evals6_diff=function(split, evals_same, evals_switch, id) {
assessment_set= assessment(split) #get validation data
newmoon= assessment_set[,"newmoonnumber"][6]
score_same=as.vector(as.numeric(evals_same[2]))
score_switch=as.vector(as.numeric(evals_switch[2]))
score_diff=score_same-score_switch
id=id
h=6
hp=cbind(newmoon,id, h, score_same, score_switch, score_diff)
}
get_evals12_diff=function(split, evals_same, evals_switch, id) {
assessment_set= assessment(split) #get validation data
newmoon= assessment_set[,"newmoonnumber"][12]
score_same=as.vector(as.numeric(evals_same[3]))
score_switch=as.vector(as.numeric(evals_switch[3]))
score_diff=score_same-score_switch
id=id
h=12
hp=cbind(newmoon,id, h, score_same, score_switch, score_diff)
}
get_coef=function(model) {
coef_est=tscount::se(model)$est
coef_se=tscount::se(model)$se
coef_es =list(coef_est, coef_se)
}