pip install MillionTrees
To be able to recreate the training examples, install the optional packages
MillionTrees[training]
from milliontrees.datasets.TreePoints import TreePointsDataset
dataset = TreePointsDataset(download=True, root_dir=<directory>)
for image, label, metadata in dataset:
image.shape == (3, 100, 100)
label.shape == (2,)
# Two fine-grained domain and a label of the coarse domain? This is still unclear see L82 of milliontrees_dataset.py
assert len(metadata) == 2
break
trainer.fit(model, train_dataloader)
from milliontrees.common.data_loaders import get_eval_loader
# Get the test set
test_data = dataset.get_subset(
"test",
transform=transforms.Compose(
[transforms.Resize((224, 224)), transforms.ToTensor()]
),
)
# Prepare the data loader
test_loader = get_eval_loader("standard", test_data, batch_size=16)
# Get predictions for the full test set
for x, y_true, metadata in test_loader:
y_pred = model(x)
# Accumulate y_true, y_pred, metadata
# Evaluate
dataset.eval(all_y_pred, all_y_true, all_metadata)
# {'recall_macro_all': 0.66, ...}
We accept submissions as .csv files