-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathtext.tex
274 lines (206 loc) · 9.25 KB
/
text.tex
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
% easychair.tex,v 3.5 2017/03/15
\documentclass{easychair}
%\documentclass[EPiC]{easychair}
%\documentclass[EPiCempty]{easychair}
%\documentclass[debug]{easychair}
%\documentclass[verbose]{easychair}
%\documentclass[notimes]{easychair}
%\documentclass[withtimes]{easychair}
%\documentclass[a4paper]{easychair}
%\documentclass[letterpaper]{easychair}
\input{common/preamble}
\input{common/math}
\input{common/tikzlibrary}
\input{common/lstlistinglibrary}
\usepackage{tikzit}
\input{common/drawing.tikzstyles}
% The categories we are dealing with
\newcommand{\catSET}{\mathbb{S}\mathbbm{et}}
\newcommand{\catINCL}{\mathbb{I}\mathbbm{ncl}}
\newcommand{\catCAT}{\mathbb{C}\mathbbm{at}}
\newcommand{\catPAR}{\mathbb{P}\mathbbm{ar}}
\newcommand{\catREL}{\mathbb{R}\mathbbm{el}}
\newcommand{\catSEN}{\mathbb{S}\mathbbm{en}}
\newcommand{\catMULT}{\mathbb{M}\mathbbm{ult}}
\newcommand{\catMON}{\mathbb{M}\mathbbm{on}}
\newcommand{\catGRAPH}{\mathbb{G}\mathbbm{raph}}
\newcommand{\catSIMPLEGRAPH}{\mathbb{SG}\mathbbm{raph}}
\newcommand{\catHYPERGRAPH}{\mathbb{H}\mathbbm{yp}}
\newcommand{\catALGOMEGA}{\mathbb{A}\mathbbm{lg}(\Omega)}
\newcommand{\catALGSIGMA}{\mathbb{A}\mathbbm{lg}(\Sigma)}
\newcommand{\catSYSSIGMA}{\mathbb{S}\mathbbm{ys}(\Sigma)}
\newcommand{\catExplanation}[4]{
\begin{description}[leftmargin=\parindent,labelindent=\parindent,itemsep=2pt,parsep=2pt]
\item[Objects] {#1}
\item[Morphisms] {#2}
\item[Composition] {#3}
\item[Identities] {#4}
\end{description}
}
%% Front Matter
%%
% Regular title as in the article class.
%
\title{Category Theory Compendium}
% Authors are joined by \and. Their affiliations are given by \inst, which indexes
% into the list defined using \institute
%
\author{
Patrick Stünkel\inst{1}%\thanks{Designed and implemented the class style}
% \and
% Somebody else\inst{2}%\thanks{Did numerous tests and provided a lot of suggestions}
}
% Institutes for affiliations are also joined by \and,
\institute{
Western Norway University of Applied Sciences,
Bergen, Norway\\
\email{[email protected]}
% \and
% Other University,
% Other, Country\\
% \email{[email protected]}\\
}
% \authorrunning{} has to be set for the shorter version of the authors' names;
% otherwise a warning will be rendered in the running heads. When processed by
% EasyChair, this command is mandatory: a document without \authorrunning
% will be rejected by EasyChair
\authorrunning{P. Stünkel}
% \titlerunning{} has to be set to either the main title or its shorter
% version for the running heads. When processed by
% EasyChair, this command is mandatory: a document without \titlerunning
% will be rejected by EasyChair
\titlerunning{Category Theory Compendium}
\begin{document}
\maketitle
\begin{abstract}
All the proofs I know
\end{abstract}
% The table of contents below is added for your convenience. Please do not use
% the table of contents if you are preparing your paper for publication in the
% EPiC Series or Kalpa Publications series
%\section{To mention}
%
%Processing in EasyChair - number of pages.
%
%Examples of how EasyChair processes papers. Caveats (replacement of EC
%class, errors).
%------------------------------------------------------------------------------
\section{Categories}
\label{sec:introduction}
\input{sections/foundations}
\section{Morphisms}
\label{sec:morphisms}
\input{sections/morphisms}
\section{Factorization Systems}
\label{sec:factorizationSystems}
\input{sections/factorization}
\section{Functors}
\label{sec:functors}
\input{sections/functors}
\section{Universal Constructions}
\label{sec:universalConstructions}
\input{sections/universal}
\section{Adjunctions}
\label{sec:adjunctions}
\input{sections/adjunctions}
\section{Algebras and Monads}
\label{sec:algebras}
\input{sections/algebras}
\section{Partial Arrows and Span Categories}
\label{sec:spans}
\input{sections/spans}
\section{Constructions}
\label{sec:constructions}
\input{sections/constructions}
\section{Toposes}
\label{sec:topoi}
\input{sections/topoi}
\section{Fibered Category Theory}
\label{sec:fibrations}
% TODO Def SLICE and CO-SLICE and ARROW category
\mkDefinition{Fibre Category}{def:fibre}{
Let $\cat{E}$ and $\cat{B}$ be two categories and $\arrow{\cat{E}}{P}{\cat{B}}$ be a functor.
For any object $I \in \catObjects{\cat{B}}$ we define the fibre $\cat{E}_I = \inverse{P}(I)$ over $I$ to be a category, which has
\catExplanation{All objects $X \in \catObjects{\cat{E}}$ for which $P(X) = I$.}
{All morphisms $\arrow{X}{f}{Y}$ for which $P(f) = \identity{I}$.}
{Retained from composition in $\cat{E}$.}
{Retained from identities in $\cat{E}$.}
}
\mkDefinition{Cartesian and Opcartesian Morphisms}{def:cartesian}{
Let $\cat{E}$ and $\cat{B}$ be two categories and $\arrow{\cat{E}}{P}{\cat{B}}$ be a functor.
\begin{enumerate}
\item An arrow $\arrow{X}{f}{Y}$ with $P(X) = \arrow{I}{u}{J}$ is called \emph{cartesian} over $u$ iff. for any arrow $\arrow{Z}{g}{Y}$ where there exist $\arrow{P(Z)}{w}{I}$ with $\compose{w}{u} = P(g)$ there exists a unique $\arrow{Z}{h}{X}$ such that $\compose{h}{f} = g$ and $P(h) = w$.
\begin{equation}
\label{eq:cartesian}
\tag{Cartesian Arrow}
\xymatrix @C= 5em {
\cat{E} \ar[ddd]_{P} & \textcolor{blue}{Z} \ar@[blue][dr]_{\textcolor{blue}{g}} \ar@[red]@{-->}[r]^{\textcolor{red}{h!}} & X \ar[d]^f \\
& & Y \\
& \textcolor{blue}{P(Z)} \ar@[blue][r]^{\textcolor{blue}{w}\textcolor{red}{= P(h)}} \ar@[blue][dr]_{\textcolor{blue}{P(g)}} & I \ar[d]^u \\
\cat{B} & & J
}
\end{equation}
\item An arrow $\arrow{X}{f}{Y}$ with $P(X) = \arrow{I}{u}{J}$ is called \emph{cartesian} over $u$ iff. for any arrow $\arrow{Z}{g}{Y}$ iff. for any arrow $\arrow{X}{g}{Z}$ where there exists $\arrow{J}{w}{P(Z)}$ with $\compose{u}{w} = P(g)$ there exists a unique $\arrow{X}{h}{Z}$ such that $\compose{f}{g} = h$ and $P(h) = w$.
\begin{equation}
\label{eq:opcartesian}
\tag{Opcartesian Arrow}
\xymatrix @C= 5em {
\cat{E} \ar[ddd]_{P} & X \ar[d]^f \ar@[blue][r]^{\textcolor{blue}{g}} & \textcolor{blue}{Z} \\
& Y \ar@[red]@{-->}[ur]_{\textcolor{red}{h!}} & \\
& I \ar[d]_u \ar@[blue][r]^{\textcolor{blue}{P(g)}} & \textcolor{blue}{P(Z)} \\
\cat{B} & J \ar@[blue][ur]_{\textcolor{blue}{w}\textcolor{red}{= P(h)}} &
}
\end{equation}
\end{enumerate}
A (op)cartesian arrow $f$ is called \emph{weakly (op-)cartesian} if the above conditions only hold for $g$'s being identities $\identity{X}$.
}
\mkProposition{Cartesian Liftings are unique up to isomorphisms}{prop:cartesianLiftingsAbstract}{
Let $\cat{E}$ and $\cat{B}$ be two categories and $\arrow{\cat{E}}{P}{\cat{B}}$ be a functor.
When $\arrow{X}{f}{Y}$ and $\arrow{X'}{f'}{Y'}$ are cartesian over the same map $\arrow{I}{u}{J} \in \catArrows{\cat{B}}$ then there exists a unique isomorphism $\arrow{X}{\isomorphic}{X'}$.
}
\mkDefinition{Fibrations and Opfibrations}{def:fibrations}{
A functor $\arrow{\cat{E}}{P}{\cat{B}}$ is called a \emph{fibration} iff. for every $Y \in \catObjects{\cat{E}}$ and $\arrow{I}{u}{P(Y)} \in \catArrows{\cat{B}}$ there exists a cartesian arrow $\arrow{X}{f}{Y}$ such that $P(f) = u$.\par
Dually, $P$ is called an \emph{opfibration} iff. for every $X \in \catObjects{E}$ and $\arrow{P(X)}{u}{J} \in \catArrows{\cat{B}}$ there exists a an opcartesian arrow $\arrow{X}{f}{Y}$ such that $P(f) = u$.
}
\mkProposition{Codomain Fibrations}{prop:codomainFibration}{
Let $\cat{C}$ be a category and $\arrow{\catArrows{\cat{C}}}{cod}{\cat{C}}$ be the codomain functor.
\begin{enumerate}
\item The fibre category $\cat{C}_I$ over $I \in \catObjects{\cat{C}}$ is equal to the slice category $\sliceCat{\cat{C}}{I}$.
\item Cartesian morphisms in $\catArrows{\cat{C}}$ are exactly the pullback squares in $\cat{C}$.
\item The functor $cod$ is fibration if and only if $\cat{C}$ has pullbacks.
\end{enumerate}
}
\mkTheorem{Grothendieck Construction}{thm:grothendieck}{
Let $\cat{E}$ and $\cat{B}$ be two categories and $\arrow{\cat{E}}{P}{\cat{B}}$ be a functor.
For any object $B \in \catObjects{\cat{B}}$ there is an equivalence of 2-categories
\begin{equation}
\mathbf{Fib}(B) \cong \left[\dual{B}, \catCAT \right]
\end{equation}
The functor going from right to left in this equivalence if called. the \emph{Grothendieck construction} (The reconstruction of a fibration from a pseudofunctor) and is denoted
\begin{equation}
\int : \left[\dual{B}, \catCAT \right] \to \sliceCat{\catCAT}{B}
\end{equation}
}
\section{Adhesive Categories}
\label{sec:adhesive}
\input{sections/adhesive}
\section{Internal Category Theory}
\label{sec:internalCT}
% TODO working internal to a category with pullbacks
\section{Regular Categories and Allegories}
\label{sec:allegories}
\section{Higher Order Category Theory}
\label{sec:HO}
% TODO notion of enriched
\label{sect:bib}
\bibliographystyle{plain}
%\bibliographystyle{alpha}
%\bibliographystyle{unsrt}
%\bibliographystyle{abbrv}
\bibliography{../../git/literature/library}
%------------------------------------------------------------------------------
%------------------------------------------------------------------------------
% Index
%\printindex
%------------------------------------------------------------------------------
\end{document}