-
Notifications
You must be signed in to change notification settings - Fork 164
/
sonic.c
1245 lines (1126 loc) · 43.2 KB
/
sonic.c
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
/* Sonic library
Copyright 2010
Bill Cox
This file is part of the Sonic Library.
This file is licensed under the Apache 2.0 license.
*/
#include "sonic.h"
#include <limits.h>
#include <math.h>
#include <stdlib.h>
#include <string.h>
/*
The following code was used to generate the following sinc lookup table.
#include <limits.h>
#include <math.h>
#include <stdio.h>
double findHannWeight(int N, double x) {
return 0.5*(1.0 - cos(2*M_PI*x/N));
}
double findSincCoefficient(int N, double x) {
double hannWindowWeight = findHannWeight(N, x);
double sincWeight;
x -= N/2.0;
if (x > 1e-9 || x < -1e-9) {
sincWeight = sin(M_PI*x)/(M_PI*x);
} else {
sincWeight = 1.0;
}
return hannWindowWeight*sincWeight;
}
int main() {
double x;
int i;
int N = 12;
for (i = 0, x = 0.0; x <= N; x += 0.02, i++) {
printf("%u %d\n", i, (int)(SHRT_MAX*findSincCoefficient(N, x)));
}
return 0;
}
*/
/* The number of points to use in the sinc FIR filter for resampling. */
#define SINC_FILTER_POINTS \
12 /* I am not able to hear improvement with higher N. */
#define SINC_TABLE_SIZE 601
/* Lookup table for windowed sinc function of SINC_FILTER_POINTS points. */
static short sincTable[SINC_TABLE_SIZE] = {
0, 0, 0, 0, 0, 0, 0, -1, -1, -2, -2,
-3, -4, -6, -7, -9, -10, -12, -14, -17, -19, -21,
-24, -26, -29, -32, -34, -37, -40, -42, -44, -47, -48,
-50, -51, -52, -53, -53, -53, -52, -50, -48, -46, -43,
-39, -34, -29, -22, -16, -8, 0, 9, 19, 29, 41,
53, 65, 79, 92, 107, 121, 137, 152, 168, 184, 200,
215, 231, 247, 262, 276, 291, 304, 317, 328, 339, 348,
357, 363, 369, 372, 374, 375, 373, 369, 363, 355, 345,
332, 318, 300, 281, 259, 234, 208, 178, 147, 113, 77,
39, 0, -41, -85, -130, -177, -225, -274, -324, -375, -426,
-478, -530, -581, -632, -682, -731, -779, -825, -870, -912, -951,
-989, -1023, -1053, -1080, -1104, -1123, -1138, -1149, -1154, -1155, -1151,
-1141, -1125, -1105, -1078, -1046, -1007, -963, -913, -857, -796, -728,
-655, -576, -492, -403, -309, -210, -107, 0, 111, 225, 342,
462, 584, 708, 833, 958, 1084, 1209, 1333, 1455, 1575, 1693,
1807, 1916, 2022, 2122, 2216, 2304, 2384, 2457, 2522, 2579, 2625,
2663, 2689, 2706, 2711, 2705, 2687, 2657, 2614, 2559, 2491, 2411,
2317, 2211, 2092, 1960, 1815, 1658, 1489, 1308, 1115, 912, 698,
474, 241, 0, -249, -506, -769, -1037, -1310, -1586, -1864, -2144,
-2424, -2703, -2980, -3254, -3523, -3787, -4043, -4291, -4529, -4757, -4972,
-5174, -5360, -5531, -5685, -5819, -5935, -6029, -6101, -6150, -6175, -6175,
-6149, -6096, -6015, -5905, -5767, -5599, -5401, -5172, -4912, -4621, -4298,
-3944, -3558, -3141, -2693, -2214, -1705, -1166, -597, 0, 625, 1277,
1955, 2658, 3386, 4135, 4906, 5697, 6506, 7332, 8173, 9027, 9893,
10769, 11654, 12544, 13439, 14335, 15232, 16128, 17019, 17904, 18782, 19649,
20504, 21345, 22170, 22977, 23763, 24527, 25268, 25982, 26669, 27327, 27953,
28547, 29107, 29632, 30119, 30569, 30979, 31349, 31678, 31964, 32208, 32408,
32565, 32677, 32744, 32767, 32744, 32677, 32565, 32408, 32208, 31964, 31678,
31349, 30979, 30569, 30119, 29632, 29107, 28547, 27953, 27327, 26669, 25982,
25268, 24527, 23763, 22977, 22170, 21345, 20504, 19649, 18782, 17904, 17019,
16128, 15232, 14335, 13439, 12544, 11654, 10769, 9893, 9027, 8173, 7332,
6506, 5697, 4906, 4135, 3386, 2658, 1955, 1277, 625, 0, -597,
-1166, -1705, -2214, -2693, -3141, -3558, -3944, -4298, -4621, -4912, -5172,
-5401, -5599, -5767, -5905, -6015, -6096, -6149, -6175, -6175, -6150, -6101,
-6029, -5935, -5819, -5685, -5531, -5360, -5174, -4972, -4757, -4529, -4291,
-4043, -3787, -3523, -3254, -2980, -2703, -2424, -2144, -1864, -1586, -1310,
-1037, -769, -506, -249, 0, 241, 474, 698, 912, 1115, 1308,
1489, 1658, 1815, 1960, 2092, 2211, 2317, 2411, 2491, 2559, 2614,
2657, 2687, 2705, 2711, 2706, 2689, 2663, 2625, 2579, 2522, 2457,
2384, 2304, 2216, 2122, 2022, 1916, 1807, 1693, 1575, 1455, 1333,
1209, 1084, 958, 833, 708, 584, 462, 342, 225, 111, 0,
-107, -210, -309, -403, -492, -576, -655, -728, -796, -857, -913,
-963, -1007, -1046, -1078, -1105, -1125, -1141, -1151, -1155, -1154, -1149,
-1138, -1123, -1104, -1080, -1053, -1023, -989, -951, -912, -870, -825,
-779, -731, -682, -632, -581, -530, -478, -426, -375, -324, -274,
-225, -177, -130, -85, -41, 0, 39, 77, 113, 147, 178,
208, 234, 259, 281, 300, 318, 332, 345, 355, 363, 369,
373, 375, 374, 372, 369, 363, 357, 348, 339, 328, 317,
304, 291, 276, 262, 247, 231, 215, 200, 184, 168, 152,
137, 121, 107, 92, 79, 65, 53, 41, 29, 19, 9,
0, -8, -16, -22, -29, -34, -39, -43, -46, -48, -50,
-52, -53, -53, -53, -52, -51, -50, -48, -47, -44, -42,
-40, -37, -34, -32, -29, -26, -24, -21, -19, -17, -14,
-12, -10, -9, -7, -6, -4, -3, -2, -2, -1, -1,
0, 0, 0, 0, 0, 0, 0};
/* These functions allocate out of a static array rather than calling
calloc/realloc/free if the NO_MALLOC flag is defined. Otherwise, call
calloc/realloc/free as usual. This is useful for running on small
microcontrollers. */
#ifndef SONIC_NO_MALLOC
/* Just call calloc. */
static void *sonicCalloc(int num, int size) {
return calloc(num, size);
}
/* Just call realloc */
static void *sonicRealloc(void *p, int oldNum, int newNum, int size) {
return realloc(p, newNum * size);
}
/* Just call free. */
static void sonicFree(void *p) {
free(p);
}
#else
#ifndef SONIC_MAX_MEMORY
/* Large enough for speedup/slowdown at 8KHz, 16-bit mono samples/second. */
#define SONIC_MAX_MEMORY (16 * 1024)
#endif
/* This static buffer is used to hold data allocated for the sonicStream struct
and its buffers. There should never be more than one sonicStream in use at a
time when using SONIC_NO_MALLOC mode. Calls to realloc move the data to the
end of memoryBuffer. Calls to free reset the memory buffer to empty. */
static void*
memoryBufferAligned[(SONIC_MAX_MEMORY + sizeof(void) - 1) / sizeof(void*)];
static unsigned char* memoryBuffer = (unsigned char*)memoryBufferAligned;
static int memoryBufferPos = 0;
/* Allocate elements from a static memory buffer. */
static void *sonicCalloc(int num, int size) {
int len = num * size;
if (memoryBufferPos + len > SONIC_MAX_MEMORY) {
return 0;
}
unsigned char *p = memoryBuffer + memoryBufferPos;
memoryBufferPos += len;
memset(p, 0, len);
return p;
}
/* Preferably, SONIC_MAX_MEMORY has been set large enough that this is never
* called. */
static void *sonicRealloc(void *p, int oldNum, int newNum, int size) {
if (newNum <= oldNum) {
return p;
}
void *newBuffer = sonicCalloc(newNum, size);
if (newBuffer == NULL) {
return NULL;
}
memcpy(newBuffer, p, oldNum * size);
return newBuffer;
}
/* Reset memoryBufferPos to 0. We asssume all data is freed at the same time. */
static void sonicFree(void *p) {
memoryBufferPos = 0;
}
#endif
struct sonicStreamStruct {
#ifdef SONIC_SPECTROGRAM
sonicSpectrogram spectrogram;
#endif /* SONIC_SPECTROGRAM */
short* inputBuffer;
short* outputBuffer;
short* pitchBuffer;
short* downSampleBuffer;
void* userData;
float speed;
float volume;
float pitch;
float rate;
/* The point of the following 3 new variables is to gracefully handle rapidly
changing input speed.
samplePeriod is just 1.0/sampleRate. It is used in accumulating
inputPlayTime, which is how long we expect the total time should be to play
the current input samples in the input buffer. timeError keeps track of
the error in play time created when playing < 2.0X speed, where we either
insert or delete a whole pitch period. This can cause the output generated
from the input to be off in play time by up to a pitch period. timeError
replaces PICOLA's concept of the number of samples to play unmodified after
a pitch period insertion or deletion. If speeding up, and the error is >=
0.0, then remove a pitch period, and play samples unmodified until
timeError is >= 0 again. If slowing down, and the error is <= 0.0,
then add a pitch period, and play samples unmodified until timeError is <=
0 again. */
float samplePeriod; /* How long each output sample takes to play. */
/* How long we expect the entire input buffer to take to play. */
float inputPlayTime;
/* The difference in when the latest output sample was played vs when we wanted. */
float timeError;
int oldRatePosition;
int newRatePosition;
int quality;
int numChannels;
int inputBufferSize;
int pitchBufferSize;
int outputBufferSize;
int numInputSamples;
int numOutputSamples;
int numPitchSamples;
int minPeriod;
int maxPeriod;
int maxRequired;
int remainingInputToCopy;
int sampleRate;
int prevPeriod;
int prevMinDiff;
};
/* Attach user data to the stream. */
void sonicSetUserData(sonicStream stream, void *userData) {
stream->userData = userData;
}
/* Retrieve user data attached to the stream. */
void *sonicGetUserData(sonicStream stream) {
return stream->userData;
}
#ifdef SONIC_SPECTROGRAM
/* Compute a spectrogram on the fly. */
void sonicComputeSpectrogram(sonicStream stream) {
stream->spectrogram = sonicCreateSpectrogram(stream->sampleRate);
/* Force changeSpeed to be called to compute the spectrogram. */
sonicSetSpeed(stream, 2.0);
}
/* Get the spectrogram. */
sonicSpectrogram sonicGetSpectrogram(sonicStream stream) {
return stream->spectrogram;
}
#endif
/* Scale the samples by the factor. */
static void scaleSamples(short* samples, int numSamples, float volume) {
/* This is 24-bit integer and 8-bit fraction fixed-point representation. */
int fixedPointVolume = volume * 256.0f;
int value;
while (numSamples--) {
value = (*samples * fixedPointVolume) >> 8;
if (value > 32767) {
value = 32767;
} else if (value < -32767) {
value = -32767;
}
*samples++ = value;
}
}
/* Get the speed of the stream. */
float sonicGetSpeed(sonicStream stream) { return stream->speed; }
/* Set the speed of the stream. */
void sonicSetSpeed(sonicStream stream, float speed) { stream->speed = speed; }
/* Get the pitch of the stream. */
float sonicGetPitch(sonicStream stream) { return stream->pitch; }
/* Set the pitch of the stream. */
void sonicSetPitch(sonicStream stream, float pitch) { stream->pitch = pitch; }
/* Get the rate of the stream. */
float sonicGetRate(sonicStream stream) { return stream->rate; }
/* Set the playback rate of the stream. This scales pitch and speed at the same
time. */
void sonicSetRate(sonicStream stream, float rate) {
stream->rate = rate;
stream->oldRatePosition = 0;
stream->newRatePosition = 0;
}
/* DEPRECATED. Get the vocal chord pitch setting. */
int sonicGetChordPitch(sonicStream stream) {
return 0;
}
/* DEPRECATED. Set the vocal chord mode for pitch computation. Default is off. */
void sonicSetChordPitch(sonicStream stream, int useChordPitch) {
}
/* Get the quality setting. */
int sonicGetQuality(sonicStream stream) { return stream->quality; }
/* Set the "quality". Default 0 is virtually as good as 1, but very much
faster. */
void sonicSetQuality(sonicStream stream, int quality) {
stream->quality = quality;
}
/* Get the scaling factor of the stream. */
float sonicGetVolume(sonicStream stream) { return stream->volume; }
/* Set the scaling factor of the stream. */
void sonicSetVolume(sonicStream stream, float volume) {
stream->volume = volume;
}
/* Free stream buffers. */
static void freeStreamBuffers(sonicStream stream) {
if (stream->inputBuffer != NULL) {
sonicFree(stream->inputBuffer);
}
if (stream->outputBuffer != NULL) {
sonicFree(stream->outputBuffer);
}
if (stream->pitchBuffer != NULL) {
sonicFree(stream->pitchBuffer);
}
if (stream->downSampleBuffer != NULL) {
sonicFree(stream->downSampleBuffer);
}
}
/* Destroy the sonic stream. */
void sonicDestroyStream(sonicStream stream) {
#ifdef SONIC_SPECTROGRAM
if (stream->spectrogram != NULL) {
sonicDestroySpectrogram(stream->spectrogram);
}
#endif /* SONIC_SPECTROGRAM */
freeStreamBuffers(stream);
sonicFree(stream);
}
/* Compute the number of samples to skip to down-sample the input. */
static int computeSkip(sonicStream stream) {
int skip = 1;
if (stream->sampleRate > SONIC_AMDF_FREQ && stream->quality == 0) {
skip = stream->sampleRate / SONIC_AMDF_FREQ;
}
return skip;
}
/* Allocate stream buffers. */
static int allocateStreamBuffers(sonicStream stream, int sampleRate,
int numChannels) {
int minPeriod = sampleRate / SONIC_MAX_PITCH;
int maxPeriod = sampleRate / SONIC_MIN_PITCH;
int maxRequired = 2 * maxPeriod;
int skip = computeSkip(stream);
/* Allocate 25% more than needed so we hopefully won't grow. */
stream->inputBufferSize = maxRequired + (maxRequired >> 2);;
stream->inputBuffer =
(short*)sonicCalloc(stream->inputBufferSize, sizeof(short) * numChannels);
if (stream->inputBuffer == NULL) {
sonicDestroyStream(stream);
return 0;
}
/* Allocate 25% more than needed so we hopefully won't grow. */
stream->outputBufferSize = maxRequired + (maxRequired >> 2);
stream->outputBuffer =
(short*)sonicCalloc(stream->outputBufferSize, sizeof(short) * numChannels);
if (stream->outputBuffer == NULL) {
sonicDestroyStream(stream);
return 0;
}
/* Allocate 25% more than needed so we hopefully won't grow. */
stream->pitchBufferSize = maxRequired + (maxRequired >> 2);
stream->pitchBuffer =
(short*)sonicCalloc(stream->pitchBufferSize, sizeof(short) * numChannels);
if (stream->pitchBuffer == NULL) {
sonicDestroyStream(stream);
return 0;
}
int downSampleBufferSize = (maxRequired + skip - 1)/ skip;
stream->downSampleBuffer = (short*)sonicCalloc(downSampleBufferSize, sizeof(short));
if (stream->downSampleBuffer == NULL) {
sonicDestroyStream(stream);
return 0;
}
stream->sampleRate = sampleRate;
stream->samplePeriod = 1.0 / sampleRate;
stream->numChannels = numChannels;
stream->oldRatePosition = 0;
stream->newRatePosition = 0;
stream->minPeriod = minPeriod;
stream->maxPeriod = maxPeriod;
stream->maxRequired = maxRequired;
stream->prevPeriod = 0;
return 1;
}
/* Create a sonic stream. Return NULL only if we are out of memory and cannot
allocate the stream. */
sonicStream sonicCreateStream(int sampleRate, int numChannels) {
sonicStream stream = (sonicStream)sonicCalloc(
1, sizeof(struct sonicStreamStruct));
if (stream == NULL) {
return NULL;
}
if (!allocateStreamBuffers(stream, sampleRate, numChannels)) {
return NULL;
}
stream->speed = 1.0f;
stream->pitch = 1.0f;
stream->volume = 1.0f;
stream->rate = 1.0f;
stream->oldRatePosition = 0;
stream->newRatePosition = 0;
stream->quality = 0;
return stream;
}
/* Get the sample rate of the stream. */
int sonicGetSampleRate(sonicStream stream) { return stream->sampleRate; }
/* Set the sample rate of the stream. This will cause samples buffered in the
stream to be lost. */
void sonicSetSampleRate(sonicStream stream, int sampleRate) {
freeStreamBuffers(stream);
allocateStreamBuffers(stream, sampleRate, stream->numChannels);
}
/* Get the number of channels. */
int sonicGetNumChannels(sonicStream stream) { return stream->numChannels; }
/* Set the num channels of the stream. This will cause samples buffered in the
stream to be lost. */
void sonicSetNumChannels(sonicStream stream, int numChannels) {
freeStreamBuffers(stream);
allocateStreamBuffers(stream, stream->sampleRate, numChannels);
}
/* Enlarge the output buffer if needed. */
static int enlargeOutputBufferIfNeeded(sonicStream stream, int numSamples) {
int outputBufferSize = stream->outputBufferSize;
if (stream->numOutputSamples + numSamples > outputBufferSize) {
stream->outputBufferSize += (outputBufferSize >> 1) + numSamples;
stream->outputBuffer = (short*)sonicRealloc(
stream->outputBuffer,
outputBufferSize,
stream->outputBufferSize,
sizeof(short) * stream->numChannels);
if (stream->outputBuffer == NULL) {
return 0;
}
}
return 1;
}
/* Enlarge the input buffer if needed. */
static int enlargeInputBufferIfNeeded(sonicStream stream, int numSamples) {
int inputBufferSize = stream->inputBufferSize;
if (stream->numInputSamples + numSamples > inputBufferSize) {
stream->inputBufferSize += (inputBufferSize >> 1) + numSamples;
stream->inputBuffer = (short*)sonicRealloc(
stream->inputBuffer,
inputBufferSize,
stream->inputBufferSize,
sizeof(short) * stream->numChannels);
if (stream->inputBuffer == NULL) {
return 0;
}
}
return 1;
}
/* Update stream->numInputSamples, and update stream->inputPlayTime. Call this
whenever adding samples to the input buffer, to keep track of total expected
input play time accounting. */
static void updateNumInputSamples(sonicStream stream, int numSamples) {
float speed = stream->speed / stream->pitch;
stream->numInputSamples += numSamples;
stream->inputPlayTime += numSamples * stream->samplePeriod / speed;
}
/* Add the input samples to the input buffer. */
static int addFloatSamplesToInputBuffer(sonicStream stream, const float* samples,
int numSamples) {
short* buffer;
int count = numSamples * stream->numChannels;
if (numSamples == 0) {
return 1;
}
if (!enlargeInputBufferIfNeeded(stream, numSamples)) {
return 0;
}
buffer = stream->inputBuffer + stream->numInputSamples * stream->numChannels;
while (count--) {
*buffer++ = (*samples++) * 32767.0f;
}
updateNumInputSamples(stream, numSamples);
return 1;
}
/* Add the input samples to the input buffer. */
static int addShortSamplesToInputBuffer(sonicStream stream, const short* samples,
int numSamples) {
if (numSamples == 0) {
return 1;
}
if (!enlargeInputBufferIfNeeded(stream, numSamples)) {
return 0;
}
memcpy(stream->inputBuffer + stream->numInputSamples * stream->numChannels,
samples, numSamples * sizeof(short) * stream->numChannels);
updateNumInputSamples(stream, numSamples);
return 1;
}
/* Add the input samples to the input buffer. */
static int addUnsignedCharSamplesToInputBuffer(sonicStream stream,
const unsigned char* samples,
int numSamples) {
short* buffer;
int count = numSamples * stream->numChannels;
if (numSamples == 0) {
return 1;
}
if (!enlargeInputBufferIfNeeded(stream, numSamples)) {
return 0;
}
buffer = stream->inputBuffer + stream->numInputSamples * stream->numChannels;
while (count--) {
*buffer++ = (*samples++ - 128) << 8;
}
updateNumInputSamples(stream, numSamples);
return 1;
}
/* Remove input samples that we have already processed. */
static void removeInputSamples(sonicStream stream, int position) {
int remainingSamples = stream->numInputSamples - position;
if (remainingSamples > 0) {
memmove(stream->inputBuffer,
stream->inputBuffer + position * stream->numChannels,
remainingSamples * sizeof(short) * stream->numChannels);
}
/* If we play 3/4ths of the samples, then the expected play time of the
remaining samples is 1/4th of the original expected play time. */
stream->inputPlayTime =
(stream->inputPlayTime * remainingSamples) / stream->numInputSamples;
stream->numInputSamples = remainingSamples;
}
/* Copy from the input buffer to the output buffer, and remove the samples from
the input buffer. */
static int copyInputToOutput(sonicStream stream, int numSamples) {
if (!enlargeOutputBufferIfNeeded(stream, numSamples)) {
return 0;
}
memcpy(stream->outputBuffer + stream->numOutputSamples * stream->numChannels,
stream->inputBuffer, numSamples * sizeof(short) * stream->numChannels);
stream->numOutputSamples += numSamples;
removeInputSamples(stream, numSamples);
return 1;
}
/* Copy from samples to the output buffer */
static int copyToOutput(sonicStream stream, short* samples, int numSamples) {
if (!enlargeOutputBufferIfNeeded(stream, numSamples)) {
return 0;
}
memcpy(stream->outputBuffer + stream->numOutputSamples * stream->numChannels,
samples, numSamples * sizeof(short) * stream->numChannels);
stream->numOutputSamples += numSamples;
return 1;
}
/* Read data out of the stream. Sometimes no data will be available, and zero
is returned, which is not an error condition. */
int sonicReadFloatFromStream(sonicStream stream, float* samples,
int maxSamples) {
int numSamples = stream->numOutputSamples;
int remainingSamples = 0;
short* buffer;
int count;
if (numSamples == 0) {
return 0;
}
if (numSamples > maxSamples) {
remainingSamples = numSamples - maxSamples;
numSamples = maxSamples;
}
buffer = stream->outputBuffer;
count = numSamples * stream->numChannels;
while (count--) {
*samples++ = (*buffer++) / 32767.0f;
}
if (remainingSamples > 0) {
memmove(stream->outputBuffer,
stream->outputBuffer + numSamples * stream->numChannels,
remainingSamples * sizeof(short) * stream->numChannels);
}
stream->numOutputSamples = remainingSamples;
return numSamples;
}
/* Read short data out of the stream. Sometimes no data will be available, and
zero is returned, which is not an error condition. */
int sonicReadShortFromStream(sonicStream stream, short* samples,
int maxSamples) {
int numSamples = stream->numOutputSamples;
int remainingSamples = 0;
if (numSamples == 0) {
return 0;
}
if (numSamples > maxSamples) {
remainingSamples = numSamples - maxSamples;
numSamples = maxSamples;
}
memcpy(samples, stream->outputBuffer,
numSamples * sizeof(short) * stream->numChannels);
if (remainingSamples > 0) {
memmove(stream->outputBuffer,
stream->outputBuffer + numSamples * stream->numChannels,
remainingSamples * sizeof(short) * stream->numChannels);
}
stream->numOutputSamples = remainingSamples;
return numSamples;
}
/* Read unsigned char data out of the stream. Sometimes no data will be
available, and zero is returned, which is not an error condition. */
int sonicReadUnsignedCharFromStream(sonicStream stream, unsigned char* samples,
int maxSamples) {
int numSamples = stream->numOutputSamples;
int remainingSamples = 0;
short* buffer;
int count;
if (numSamples == 0) {
return 0;
}
if (numSamples > maxSamples) {
remainingSamples = numSamples - maxSamples;
numSamples = maxSamples;
}
buffer = stream->outputBuffer;
count = numSamples * stream->numChannels;
while (count--) {
*samples++ = (char)((*buffer++) >> 8) + 128;
}
if (remainingSamples > 0) {
memmove(stream->outputBuffer,
stream->outputBuffer + numSamples * stream->numChannels,
remainingSamples * sizeof(short) * stream->numChannels);
}
stream->numOutputSamples = remainingSamples;
return numSamples;
}
/* Force the sonic stream to generate output using whatever data it currently
has. No extra delay will be added to the output, but flushing in the middle
of words could introduce distortion. */
int sonicFlushStream(sonicStream stream) {
int maxRequired = stream->maxRequired;
int remainingSamples = stream->numInputSamples;
float speed = stream->speed / stream->pitch;
float rate = stream->rate * stream->pitch;
int expectedOutputSamples =
stream->numOutputSamples +
(int)((remainingSamples / speed + stream->numPitchSamples) / rate + 0.5f);
/* Add enough silence to flush both input and pitch buffers. */
if (!enlargeInputBufferIfNeeded(stream, remainingSamples + 2 * maxRequired)) {
return 0;
}
memset(stream->inputBuffer + remainingSamples * stream->numChannels, 0,
2 * maxRequired * sizeof(short) * stream->numChannels);
stream->numInputSamples += 2 * maxRequired;
if (!sonicWriteShortToStream(stream, NULL, 0)) {
return 0;
}
/* Throw away any extra samples we generated due to the silence we added */
if (stream->numOutputSamples > expectedOutputSamples) {
stream->numOutputSamples = expectedOutputSamples;
}
/* Empty input and pitch buffers */
stream->numInputSamples = 0;
stream->inputPlayTime = 0.0f;
stream->timeError = 0.0f;
stream->numPitchSamples = 0;
return 1;
}
/* Return the number of samples in the output buffer */
int sonicSamplesAvailable(sonicStream stream) {
return stream->numOutputSamples;
}
/* If skip is greater than one, average skip samples together and write them to
the down-sample buffer. If numChannels is greater than one, mix the channels
together as we down sample. */
static void downSampleInput(sonicStream stream, short* samples, int skip) {
int numSamples = stream->maxRequired / skip;
int samplesPerValue = stream->numChannels * skip;
int i, j;
int value;
short* downSamples = stream->downSampleBuffer;
for (i = 0; i < numSamples; i++) {
value = 0;
for (j = 0; j < samplesPerValue; j++) {
value += *samples++;
}
value /= samplesPerValue;
*downSamples++ = value;
}
}
/* Find the best frequency match in the range, and given a sample skip multiple.
For now, just find the pitch of the first channel. */
static int findPitchPeriodInRange(short* samples, int minPeriod, int maxPeriod,
int* retMinDiff, int* retMaxDiff) {
int period, bestPeriod = 0, worstPeriod = 255;
short* s;
short* p;
short sVal, pVal;
unsigned long diff, minDiff = 1, maxDiff = 0;
int i;
for (period = minPeriod; period <= maxPeriod; period++) {
diff = 0;
s = samples;
p = samples + period;
for (i = 0; i < period; i++) {
sVal = *s++;
pVal = *p++;
diff += sVal >= pVal ? (unsigned short)(sVal - pVal)
: (unsigned short)(pVal - sVal);
}
/* Note that the highest number of samples we add into diff will be less
than 256, since we skip samples. Thus, diff is a 24 bit number, and
we can safely multiply by numSamples without overflow */
if (bestPeriod == 0 || diff * bestPeriod < minDiff * period) {
minDiff = diff;
bestPeriod = period;
}
if (diff * worstPeriod > maxDiff * period) {
maxDiff = diff;
worstPeriod = period;
}
}
*retMinDiff = minDiff / bestPeriod;
*retMaxDiff = maxDiff / worstPeriod;
return bestPeriod;
}
/* At abrupt ends of voiced words, we can have pitch periods that are better
approximated by the previous pitch period estimate. Try to detect this case.
*/
static int prevPeriodBetter(sonicStream stream, int minDiff,
int maxDiff, int preferNewPeriod) {
if (minDiff == 0 || stream->prevPeriod == 0) {
return 0;
}
if (preferNewPeriod) {
if (maxDiff > minDiff * 3) {
/* Got a reasonable match this period */
return 0;
}
if (minDiff * 2 <= stream->prevMinDiff * 3) {
/* Mismatch is not that much greater this period */
return 0;
}
} else {
if (minDiff <= stream->prevMinDiff) {
return 0;
}
}
return 1;
}
/* Find the pitch period. This is a critical step, and we may have to try
multiple ways to get a good answer. This version uses Average Magnitude
Difference Function (AMDF). To improve speed, we down sample by an integer
factor get in the 11KHz range, and then do it again with a narrower
frequency range without down sampling */
static int findPitchPeriod(sonicStream stream, short* samples,
int preferNewPeriod) {
int minPeriod = stream->minPeriod;
int maxPeriod = stream->maxPeriod;
int minDiff, maxDiff, retPeriod;
int skip = computeSkip(stream);
int period;
if (stream->numChannels == 1 && skip == 1) {
period = findPitchPeriodInRange(samples, minPeriod, maxPeriod, &minDiff,
&maxDiff);
} else {
downSampleInput(stream, samples, skip);
period = findPitchPeriodInRange(stream->downSampleBuffer, minPeriod / skip,
maxPeriod / skip, &minDiff, &maxDiff);
if (skip != 1) {
period *= skip;
minPeriod = period - (skip << 2);
maxPeriod = period + (skip << 2);
if (minPeriod < stream->minPeriod) {
minPeriod = stream->minPeriod;
}
if (maxPeriod > stream->maxPeriod) {
maxPeriod = stream->maxPeriod;
}
if (stream->numChannels == 1) {
period = findPitchPeriodInRange(samples, minPeriod, maxPeriod, &minDiff,
&maxDiff);
} else {
downSampleInput(stream, samples, 1);
period = findPitchPeriodInRange(stream->downSampleBuffer, minPeriod,
maxPeriod, &minDiff, &maxDiff);
}
}
}
if (prevPeriodBetter(stream, minDiff, maxDiff, preferNewPeriod)) {
retPeriod = stream->prevPeriod;
} else {
retPeriod = period;
}
stream->prevMinDiff = minDiff;
stream->prevPeriod = period;
return retPeriod;
}
/* Overlap two sound segments, ramp the volume of one down, while ramping the
other one from zero up, and add them, storing the result at the output. */
static void overlapAdd(int numSamples, int numChannels, short* out,
short* rampDown, short* rampUp) {
short* o;
short* u;
short* d;
int i, t;
for (i = 0; i < numChannels; i++) {
o = out + i;
u = rampUp + i;
d = rampDown + i;
for (t = 0; t < numSamples; t++) {
#ifdef SONIC_USE_SIN
float ratio = sin(t * M_PI / (2 * numSamples));
*o = *d * (1.0f - ratio) + *u * ratio;
#else
*o = (*d * (numSamples - t) + *u * t) / numSamples;
#endif
o += numChannels;
d += numChannels;
u += numChannels;
}
}
}
/* Just move the new samples in the output buffer to the pitch buffer */
static int moveNewSamplesToPitchBuffer(sonicStream stream,
int originalNumOutputSamples) {
int numSamples = stream->numOutputSamples - originalNumOutputSamples;
int numChannels = stream->numChannels;
int pitchBufferSize = stream->pitchBufferSize;
if (stream->numPitchSamples + numSamples > pitchBufferSize) {
stream->pitchBufferSize += (pitchBufferSize >> 1) + numSamples;
stream->pitchBuffer = (short*)sonicRealloc(stream->pitchBuffer,
pitchBufferSize, stream->pitchBufferSize, sizeof(short) * numChannels);
}
memcpy(stream->pitchBuffer + stream->numPitchSamples * numChannels,
stream->outputBuffer + originalNumOutputSamples * numChannels,
numSamples * sizeof(short) * numChannels);
stream->numOutputSamples = originalNumOutputSamples;
stream->numPitchSamples += numSamples;
return 1;
}
/* Remove processed samples from the pitch buffer. */
static void removePitchSamples(sonicStream stream, int numSamples) {
int numChannels = stream->numChannels;
short* source = stream->pitchBuffer + numSamples * numChannels;
if (numSamples == 0) {
return;
}
if (numSamples != stream->numPitchSamples) {
memmove(
stream->pitchBuffer, source,
(stream->numPitchSamples - numSamples) * sizeof(short) * numChannels);
}
stream->numPitchSamples -= numSamples;
}
/* Approximate the sinc function times a Hann window from the sinc table. */
static int findSincCoefficient(int i, int ratio, int width) {
int lobePoints = (SINC_TABLE_SIZE - 1) / SINC_FILTER_POINTS;
int left = i * lobePoints + (ratio * lobePoints) / width;
int right = left + 1;
int position = i * lobePoints * width + ratio * lobePoints - left * width;
int leftVal = sincTable[left];
int rightVal = sincTable[right];
return ((leftVal * (width - position) + rightVal * position) << 1) / width;
}
/* Return 1 if value >= 0, else -1. This represents the sign of value. */
static int getSign(int value) { return value >= 0 ? 1 : -1; }
/* Interpolate the new output sample. */
static short interpolate(sonicStream stream, short* in, int oldSampleRate,
int newSampleRate) {
/* Compute N-point sinc FIR-filter here. Clip rather than overflow. */
int i;
int total = 0;
int position = stream->newRatePosition * oldSampleRate;
int leftPosition = stream->oldRatePosition * newSampleRate;
int rightPosition = (stream->oldRatePosition + 1) * newSampleRate;
int ratio = rightPosition - position - 1;
int width = rightPosition - leftPosition;
int weight, value;
int oldSign;
int overflowCount = 0;
for (i = 0; i < SINC_FILTER_POINTS; i++) {
weight = findSincCoefficient(i, ratio, width);
value = in[i * stream->numChannels] * weight;
oldSign = getSign(total);
total += value;
if (oldSign != getSign(total) && getSign(value) == oldSign) {
/* We must have overflowed. This can happen with a sinc filter. */
overflowCount += oldSign;
}
}
/* It is better to clip than to wrap if there was a overflow. */
if (overflowCount > 0) {
return SHRT_MAX;
} else if (overflowCount < 0) {
return SHRT_MIN;
}
return total >> 16;
}
/* Change the rate. Interpolate with a sinc FIR filter using a Hann window. */
static int adjustRate(sonicStream stream, float rate,
int originalNumOutputSamples) {
int newSampleRate = stream->sampleRate / rate;
int oldSampleRate = stream->sampleRate;
int numChannels = stream->numChannels;
int position;
short *in, *out;
int i;
int N = SINC_FILTER_POINTS;
/* Set these values to help with the integer math */
while (newSampleRate > (1 << 14) || oldSampleRate > (1 << 14)) {
newSampleRate >>= 1;
oldSampleRate >>= 1;
}
if (stream->numOutputSamples == originalNumOutputSamples) {
return 1;
}
if (!moveNewSamplesToPitchBuffer(stream, originalNumOutputSamples)) {
return 0;
}
/* Leave at least N pitch sample in the buffer */
for (position = 0; position < stream->numPitchSamples - N; position++) {
while ((stream->oldRatePosition + 1) * newSampleRate >
stream->newRatePosition * oldSampleRate) {
if (!enlargeOutputBufferIfNeeded(stream, 1)) {
return 0;
}
out = stream->outputBuffer + stream->numOutputSamples * numChannels;
in = stream->pitchBuffer + position * numChannels;