-
Notifications
You must be signed in to change notification settings - Fork 164
/
Sonic.java
1085 lines (993 loc) · 37.4 KB
/
Sonic.java
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
/* Sonic library
Copyright 2010, 2011
Bill Cox
This file is part of the Sonic Library.
This file is licensed under the Apache 2.0 license.
*/
package sonic;
public class Sonic {
private static final int SONIC_MIN_PITCH = 65;
private static final int SONIC_MAX_PITCH = 400;
// This is used to down-sample some inputs to improve speed
private static final int SONIC_AMDF_FREQ = 4000;
// The number of points to use in the sinc FIR filter for resampling.
private static final int SINC_FILTER_POINTS = 12;
private static final int SINC_TABLE_SIZE = 601;
// Lookup table for windowed sinc function of SINC_FILTER_POINTS points.
// The code to generate this is in the header comment of sonic.c.
private static final short sincTable[] = {
0, 0, 0, 0, 0, 0, 0, -1, -1, -2, -2, -3, -4, -6, -7, -9, -10, -12, -14,
-17, -19, -21, -24, -26, -29, -32, -34, -37, -40, -42, -44, -47, -48, -50,
-51, -52, -53, -53, -53, -52, -50, -48, -46, -43, -39, -34, -29, -22, -16,
-8, 0, 9, 19, 29, 41, 53, 65, 79, 92, 107, 121, 137, 152, 168, 184, 200,
215, 231, 247, 262, 276, 291, 304, 317, 328, 339, 348, 357, 363, 369, 372,
374, 375, 373, 369, 363, 355, 345, 332, 318, 300, 281, 259, 234, 208, 178,
147, 113, 77, 39, 0, -41, -85, -130, -177, -225, -274, -324, -375, -426,
-478, -530, -581, -632, -682, -731, -779, -825, -870, -912, -951, -989,
-1023, -1053, -1080, -1104, -1123, -1138, -1149, -1154, -1155, -1151,
-1141, -1125, -1105, -1078, -1046, -1007, -963, -913, -857, -796, -728,
-655, -576, -492, -403, -309, -210, -107, 0, 111, 225, 342, 462, 584, 708,
833, 958, 1084, 1209, 1333, 1455, 1575, 1693, 1807, 1916, 2022, 2122, 2216,
2304, 2384, 2457, 2522, 2579, 2625, 2663, 2689, 2706, 2711, 2705, 2687,
2657, 2614, 2559, 2491, 2411, 2317, 2211, 2092, 1960, 1815, 1658, 1489,
1308, 1115, 912, 698, 474, 241, 0, -249, -506, -769, -1037, -1310, -1586,
-1864, -2144, -2424, -2703, -2980, -3254, -3523, -3787, -4043, -4291,
-4529, -4757, -4972, -5174, -5360, -5531, -5685, -5819, -5935, -6029,
-6101, -6150, -6175, -6175, -6149, -6096, -6015, -5905, -5767, -5599,
-5401, -5172, -4912, -4621, -4298, -3944, -3558, -3141, -2693, -2214,
-1705, -1166, -597, 0, 625, 1277, 1955, 2658, 3386, 4135, 4906, 5697, 6506,
7332, 8173, 9027, 9893, 10769, 11654, 12544, 13439, 14335, 15232, 16128,
17019, 17904, 18782, 19649, 20504, 21345, 22170, 22977, 23763, 24527,
25268, 25982, 26669, 27327, 27953, 28547, 29107, 29632, 30119, 30569,
30979, 31349, 31678, 31964, 32208, 32408, 32565, 32677, 32744, 32767,
32744, 32677, 32565, 32408, 32208, 31964, 31678, 31349, 30979, 30569,
30119, 29632, 29107, 28547, 27953, 27327, 26669, 25982, 25268, 24527,
23763, 22977, 22170, 21345, 20504, 19649, 18782, 17904, 17019, 16128,
15232, 14335, 13439, 12544, 11654, 10769, 9893, 9027, 8173, 7332, 6506,
5697, 4906, 4135, 3386, 2658, 1955, 1277, 625, 0, -597, -1166, -1705,
-2214, -2693, -3141, -3558, -3944, -4298, -4621, -4912, -5172, -5401,
-5599, -5767, -5905, -6015, -6096, -6149, -6175, -6175, -6150, -6101,
-6029, -5935, -5819, -5685, -5531, -5360, -5174, -4972, -4757, -4529,
-4291, -4043, -3787, -3523, -3254, -2980, -2703, -2424, -2144, -1864,
-1586, -1310, -1037, -769, -506, -249, 0, 241, 474, 698, 912, 1115, 1308,
1489, 1658, 1815, 1960, 2092, 2211, 2317, 2411, 2491, 2559, 2614, 2657,
2687, 2705, 2711, 2706, 2689, 2663, 2625, 2579, 2522, 2457, 2384, 2304,
2216, 2122, 2022, 1916, 1807, 1693, 1575, 1455, 1333, 1209, 1084, 958, 833,
708, 584, 462, 342, 225, 111, 0, -107, -210, -309, -403, -492, -576, -655,
-728, -796, -857, -913, -963, -1007, -1046, -1078, -1105, -1125, -1141,
-1151, -1155, -1154, -1149, -1138, -1123, -1104, -1080, -1053, -1023, -989,
-951, -912, -870, -825, -779, -731, -682, -632, -581, -530, -478, -426,
-375, -324, -274, -225, -177, -130, -85, -41, 0, 39, 77, 113, 147, 178,
208, 234, 259, 281, 300, 318, 332, 345, 355, 363, 369, 373, 375, 374, 372,
369, 363, 357, 348, 339, 328, 317, 304, 291, 276, 262, 247, 231, 215, 200,
184, 168, 152, 137, 121, 107, 92, 79, 65, 53, 41, 29, 19, 9, 0, -8, -16,
-22, -29, -34, -39, -43, -46, -48, -50, -52, -53, -53, -53, -52, -51, -50,
-48, -47, -44, -42, -40, -37, -34, -32, -29, -26, -24, -21, -19, -17, -14,
-12, -10, -9, -7, -6, -4, -3, -2, -2, -1, -1, 0, 0, 0, 0, 0, 0, 0
};
private short inputBuffer[];
private short outputBuffer[];
private short pitchBuffer[];
private short downSampleBuffer[];
private float speed;
private float volume;
private float pitch;
private float rate;
private int oldRatePosition;
private int newRatePosition;
private boolean useChordPitch;
private int quality;
private int numChannels;
private int inputBufferSize;
private int pitchBufferSize;
private int outputBufferSize;
private int numInputSamples;
private int numOutputSamples;
private int numPitchSamples;
private int minPeriod;
private int maxPeriod;
private int maxRequired;
private int remainingInputToCopy;
private int sampleRate;
private int prevPeriod;
private int prevMinDiff;
private int minDiff;
private int maxDiff;
// Resize the array.
private short[] resize(
short[] oldArray,
int newLength)
{
newLength *= numChannels;
short[] newArray = new short[newLength];
int length = oldArray.length <= newLength? oldArray.length : newLength;
System.arraycopy(oldArray, 0, newArray, 0, length);
return newArray;
}
// Move samples from one array to another. May move samples down within an array, but not up.
private void move(
short dest[],
int destPos,
short source[],
int sourcePos,
int numSamples)
{
System.arraycopy(source, sourcePos*numChannels, dest, destPos*numChannels, numSamples*numChannels);
}
// Scale the samples by the factor.
private void scaleSamples(
short samples[],
int position,
int numSamples,
float volume)
{
// Convert volume to fixed-point, with a 12 bit fraction.
int fixedPointVolume = (int)(volume*4096.0f);
int start = position*numChannels;
int stop = start + numSamples*numChannels;
for(int xSample = start; xSample < stop; xSample++) {
// Convert back from fixed point to 16-bit integer.
int value = (samples[xSample]*fixedPointVolume) >> 12;
if(value > 32767) {
value = 32767;
} else if(value < -32767) {
value = -32767;
}
samples[xSample] = (short)value;
}
}
// Get the speed of the stream.
public float getSpeed()
{
return speed;
}
// Set the speed of the stream.
public void setSpeed(
float speed)
{
this.speed = speed;
}
// Get the pitch of the stream.
public float getPitch()
{
return pitch;
}
// Set the pitch of the stream.
public void setPitch(
float pitch)
{
this.pitch = pitch;
}
// Get the rate of the stream.
public float getRate()
{
return rate;
}
// Set the playback rate of the stream. This scales pitch and speed at the same time.
public void setRate(
float rate)
{
this.rate = rate;
this.oldRatePosition = 0;
this.newRatePosition = 0;
}
// Get the vocal chord pitch setting.
public boolean getChordPitch()
{
return useChordPitch;
}
// Set the vocal chord mode for pitch computation. Default is off.
public void setChordPitch(
boolean useChordPitch)
{
this.useChordPitch = useChordPitch;
}
// Get the quality setting.
public int getQuality()
{
return quality;
}
// Set the "quality". Default 0 is virtually as good as 1, but very much faster.
public void setQuality(
int quality)
{
this.quality = quality;
}
// Get the scaling factor of the stream.
public float getVolume()
{
return volume;
}
// Set the scaling factor of the stream.
public void setVolume(
float volume)
{
this.volume = volume;
}
// Allocate stream buffers.
private void allocateStreamBuffers(
int sampleRate,
int numChannels)
{
minPeriod = sampleRate/SONIC_MAX_PITCH;
maxPeriod = sampleRate/SONIC_MIN_PITCH;
maxRequired = 2*maxPeriod;
inputBufferSize = maxRequired;
inputBuffer = new short[maxRequired*numChannels];
outputBufferSize = maxRequired;
outputBuffer = new short[maxRequired*numChannels];
pitchBufferSize = maxRequired;
pitchBuffer = new short[maxRequired*numChannels];
downSampleBuffer = new short[maxRequired];
this.sampleRate = sampleRate;
this.numChannels = numChannels;
oldRatePosition = 0;
newRatePosition = 0;
prevPeriod = 0;
}
// Create a sonic stream.
public Sonic(
int sampleRate,
int numChannels)
{
allocateStreamBuffers(sampleRate, numChannels);
speed = 1.0f;
pitch = 1.0f;
volume = 1.0f;
rate = 1.0f;
oldRatePosition = 0;
newRatePosition = 0;
useChordPitch = false;
quality = 0;
}
// Get the sample rate of the stream.
public int getSampleRate()
{
return sampleRate;
}
// Set the sample rate of the stream. This will cause samples buffered in the stream to be lost.
public void setSampleRate(
int sampleRate)
{
allocateStreamBuffers(sampleRate, numChannels);
}
// Get the number of channels.
public int getNumChannels()
{
return numChannels;
}
// Set the num channels of the stream. This will cause samples buffered in the stream to be lost.
public void setNumChannels(
int numChannels)
{
allocateStreamBuffers(sampleRate, numChannels);
}
// Enlarge the output buffer if needed.
private void enlargeOutputBufferIfNeeded(
int numSamples)
{
if(numOutputSamples + numSamples > outputBufferSize) {
outputBufferSize += (outputBufferSize >> 1) + numSamples;
outputBuffer = resize(outputBuffer, outputBufferSize);
}
}
// Enlarge the input buffer if needed.
private void enlargeInputBufferIfNeeded(
int numSamples)
{
if(numInputSamples + numSamples > inputBufferSize) {
inputBufferSize += (inputBufferSize >> 1) + numSamples;
inputBuffer = resize(inputBuffer, inputBufferSize);
}
}
// Add the input samples to the input buffer.
private void addFloatSamplesToInputBuffer(
float samples[],
int numSamples)
{
if(numSamples == 0) {
return;
}
enlargeInputBufferIfNeeded(numSamples);
int xBuffer = numInputSamples*numChannels;
for(int xSample = 0; xSample < numSamples*numChannels; xSample++) {
inputBuffer[xBuffer++] = (short)(samples[xSample]*32767.0f);
}
numInputSamples += numSamples;
}
// Add the input samples to the input buffer.
private void addShortSamplesToInputBuffer(
short samples[],
int numSamples)
{
if(numSamples == 0) {
return;
}
enlargeInputBufferIfNeeded(numSamples);
move(inputBuffer, numInputSamples, samples, 0, numSamples);
numInputSamples += numSamples;
}
// Add the input samples to the input buffer.
private void addUnsignedByteSamplesToInputBuffer(
byte samples[],
int numSamples)
{
short sample;
enlargeInputBufferIfNeeded(numSamples);
int xBuffer = numInputSamples*numChannels;
for(int xSample = 0; xSample < numSamples*numChannels; xSample++) {
sample = (short)((samples[xSample] & 0xff) - 128); // Convert from unsigned to signed
inputBuffer[xBuffer++] = (short) (sample << 8);
}
numInputSamples += numSamples;
}
// Add the input samples to the input buffer. They must be 16-bit little-endian encoded in a byte array.
private void addBytesToInputBuffer(
byte inBuffer[],
int numBytes)
{
int numSamples = numBytes/(2*numChannels);
short sample;
enlargeInputBufferIfNeeded(numSamples);
int xBuffer = numInputSamples*numChannels;
for(int xByte = 0; xByte + 1 < numBytes; xByte += 2) {
sample = (short)((inBuffer[xByte] & 0xff) | (inBuffer[xByte + 1] << 8));
inputBuffer[xBuffer++] = sample;
}
numInputSamples += numSamples;
}
// Remove input samples that we have already processed.
private void removeInputSamples(
int position)
{
int remainingSamples = numInputSamples - position;
move(inputBuffer, 0, inputBuffer, position, remainingSamples);
numInputSamples = remainingSamples;
}
// Just copy from the array to the output buffer
private void copyToOutput(
short samples[],
int position,
int numSamples)
{
enlargeOutputBufferIfNeeded(numSamples);
move(outputBuffer, numOutputSamples, samples, position, numSamples);
numOutputSamples += numSamples;
}
// Just copy from the input buffer to the output buffer. Return num samples copied.
private int copyInputToOutput(
int position)
{
int numSamples = remainingInputToCopy;
if(numSamples > maxRequired) {
numSamples = maxRequired;
}
copyToOutput(inputBuffer, position, numSamples);
remainingInputToCopy -= numSamples;
return numSamples;
}
// Read data out of the stream. Sometimes no data will be available, and zero
// is returned, which is not an error condition.
public int readFloatFromStream(
float samples[],
int maxSamples)
{
int numSamples = numOutputSamples;
int remainingSamples = 0;
if(numSamples == 0) {
return 0;
}
if(numSamples > maxSamples) {
remainingSamples = numSamples - maxSamples;
numSamples = maxSamples;
}
for(int xSample = 0; xSample < numSamples*numChannels; xSample++) {
samples[xSample] = (outputBuffer[xSample])/32767.0f;
}
move(outputBuffer, 0, outputBuffer, numSamples, remainingSamples);
numOutputSamples = remainingSamples;
return numSamples;
}
// Read short data out of the stream. Sometimes no data will be available, and zero
// is returned, which is not an error condition.
public int readShortFromStream(
short samples[],
int maxSamples)
{
int numSamples = numOutputSamples;
int remainingSamples = 0;
if(numSamples == 0) {
return 0;
}
if(numSamples > maxSamples) {
remainingSamples = numSamples - maxSamples;
numSamples = maxSamples;
}
move(samples, 0, outputBuffer, 0, numSamples);
move(outputBuffer, 0, outputBuffer, numSamples, remainingSamples);
numOutputSamples = remainingSamples;
return numSamples;
}
// Read unsigned byte data out of the stream. Sometimes no data will be available, and zero
// is returned, which is not an error condition.
public int readUnsignedByteFromStream(
byte samples[],
int maxSamples)
{
int numSamples = numOutputSamples;
int remainingSamples = 0;
if(numSamples == 0) {
return 0;
}
if(numSamples > maxSamples) {
remainingSamples = numSamples - maxSamples;
numSamples = maxSamples;
}
for(int xSample = 0; xSample < numSamples*numChannels; xSample++) {
samples[xSample] = (byte)((outputBuffer[xSample] >> 8) + 128);
}
move(outputBuffer, 0, outputBuffer, numSamples, remainingSamples);
numOutputSamples = remainingSamples;
return numSamples;
}
// Read unsigned byte data out of the stream. Sometimes no data will be available, and zero
// is returned, which is not an error condition.
public int readBytesFromStream(
byte outBuffer[],
int maxBytes)
{
int maxSamples = maxBytes/(2*numChannels);
int numSamples = numOutputSamples;
int remainingSamples = 0;
if(numSamples == 0 || maxSamples == 0) {
return 0;
}
if(numSamples > maxSamples) {
remainingSamples = numSamples - maxSamples;
numSamples = maxSamples;
}
for(int xSample = 0; xSample < numSamples*numChannels; xSample++) {
short sample = outputBuffer[xSample];
outBuffer[xSample << 1] = (byte)(sample & 0xff);
outBuffer[(xSample << 1) + 1] = (byte)(sample >> 8);
}
move(outputBuffer, 0, outputBuffer, numSamples, remainingSamples);
numOutputSamples = remainingSamples;
return 2*numSamples*numChannels;
}
// Force the sonic stream to generate output using whatever data it currently
// has. No extra delay will be added to the output, but flushing in the middle of
// words could introduce distortion.
public void flushStream()
{
int remainingSamples = numInputSamples;
float s = speed/pitch;
float r = rate*pitch;
int expectedOutputSamples = numOutputSamples + (int)((remainingSamples/s + numPitchSamples)/r + 0.5f);
// Add enough silence to flush both input and pitch buffers.
enlargeInputBufferIfNeeded(remainingSamples + 2*maxRequired);
for(int xSample = 0; xSample < 2*maxRequired*numChannels; xSample++) {
inputBuffer[remainingSamples*numChannels + xSample] = 0;
}
numInputSamples += 2*maxRequired;
writeShortToStream(null, 0);
// Throw away any extra samples we generated due to the silence we added.
if(numOutputSamples > expectedOutputSamples) {
numOutputSamples = expectedOutputSamples;
}
// Empty input and pitch buffers.
numInputSamples = 0;
remainingInputToCopy = 0;
numPitchSamples = 0;
}
// Return the number of samples in the output buffer
public int samplesAvailable()
{
return numOutputSamples;
}
// If skip is greater than one, average skip samples together and write them to
// the down-sample buffer. If numChannels is greater than one, mix the channels
// together as we down sample.
private void downSampleInput(
short samples[],
int position,
int skip)
{
int numSamples = maxRequired/skip;
int samplesPerValue = numChannels*skip;
int value;
position *= numChannels;
for(int i = 0; i < numSamples; i++) {
value = 0;
for(int j = 0; j < samplesPerValue; j++) {
value += samples[position + i*samplesPerValue + j];
}
value /= samplesPerValue;
downSampleBuffer[i] = (short)value;
}
}
// Find the best frequency match in the range, and given a sample skip multiple.
// For now, just find the pitch of the first channel.
private int findPitchPeriodInRange(
short samples[],
int position,
int minPeriod,
int maxPeriod)
{
int bestPeriod = 0, worstPeriod = 255;
int minDiff = 1, maxDiff = 0;
position *= numChannels;
for(int period = minPeriod; period <= maxPeriod; period++) {
int diff = 0;
for(int i = 0; i < period; i++) {
short sVal = samples[position + i];
short pVal = samples[position + period + i];
diff += sVal >= pVal? sVal - pVal : pVal - sVal;
}
/* Note that the highest number of samples we add into diff will be less
than 256, since we skip samples. Thus, diff is a 24 bit number, and
we can safely multiply by numSamples without overflow */
if(diff*bestPeriod < minDiff*period) {
minDiff = diff;
bestPeriod = period;
}
if(diff*worstPeriod > maxDiff*period) {
maxDiff = diff;
worstPeriod = period;
}
}
this.minDiff = minDiff/bestPeriod;
this.maxDiff = maxDiff/worstPeriod;
return bestPeriod;
}
// At abrupt ends of voiced words, we can have pitch periods that are better
// approximated by the previous pitch period estimate. Try to detect this case.
private boolean prevPeriodBetter(
int minDiff,
int maxDiff,
boolean preferNewPeriod)
{
if(minDiff == 0 || prevPeriod == 0) {
return false;
}
if(preferNewPeriod) {
if(maxDiff > minDiff*3) {
// Got a reasonable match this period
return false;
}
if(minDiff*2 <= prevMinDiff*3) {
// Mismatch is not that much greater this period
return false;
}
} else {
if(minDiff <= prevMinDiff) {
return false;
}
}
return true;
}
// Find the pitch period. This is a critical step, and we may have to try
// multiple ways to get a good answer. This version uses AMDF. To improve
// speed, we down sample by an integer factor get in the 11KHz range, and then
// do it again with a narrower frequency range without down sampling
private int findPitchPeriod(
short samples[],
int position,
boolean preferNewPeriod)
{
int period, retPeriod;
int skip = 1;
if(sampleRate > SONIC_AMDF_FREQ && quality == 0) {
skip = sampleRate/SONIC_AMDF_FREQ;
}
if(numChannels == 1 && skip == 1) {
period = findPitchPeriodInRange(samples, position, minPeriod, maxPeriod);
} else {
downSampleInput(samples, position, skip);
period = findPitchPeriodInRange(downSampleBuffer, 0, minPeriod/skip,
maxPeriod/skip);
if(skip != 1) {
period *= skip;
int minP = period - (skip << 2);
int maxP = period + (skip << 2);
if(minP < minPeriod) {
minP = minPeriod;
}
if(maxP > maxPeriod) {
maxP = maxPeriod;
}
if(numChannels == 1) {
period = findPitchPeriodInRange(samples, position, minP, maxP);
} else {
downSampleInput(samples, position, 1);
period = findPitchPeriodInRange(downSampleBuffer, 0, minP, maxP);
}
}
}
if(prevPeriodBetter(minDiff, maxDiff, preferNewPeriod)) {
retPeriod = prevPeriod;
} else {
retPeriod = period;
}
prevMinDiff = minDiff;
prevPeriod = period;
return retPeriod;
}
// Overlap two sound segments, ramp the volume of one down, while ramping the
// other one from zero up, and add them, storing the result at the output.
private void overlapAdd(
int numSamples,
int numChannels,
short out[],
int outPos,
short rampDown[],
int rampDownPos,
short rampUp[],
int rampUpPos)
{
for(int i = 0; i < numChannels; i++) {
int o = outPos*numChannels + i;
int u = rampUpPos*numChannels + i;
int d = rampDownPos*numChannels + i;
for(int t = 0; t < numSamples; t++) {
out[o] = (short)((rampDown[d]*(numSamples - t) + rampUp[u]*t)/numSamples);
o += numChannels;
d += numChannels;
u += numChannels;
}
}
}
// Overlap two sound segments, ramp the volume of one down, while ramping the
// other one from zero up, and add them, storing the result at the output.
private void overlapAddWithSeparation(
int numSamples,
int numChannels,
int separation,
short out[],
int outPos,
short rampDown[],
int rampDownPos,
short rampUp[],
int rampUpPos)
{
for(int i = 0; i < numChannels; i++) {
int o = outPos*numChannels + i;
int u = rampUpPos*numChannels + i;
int d = rampDownPos*numChannels + i;
for(int t = 0; t < numSamples + separation; t++) {
if(t < separation) {
out[o] = (short)(rampDown[d]*(numSamples - t)/numSamples);
d += numChannels;
} else if(t < numSamples) {
out[o] = (short)((rampDown[d]*(numSamples - t) + rampUp[u]*(t - separation))/numSamples);
d += numChannels;
u += numChannels;
} else {
out[o] = (short)(rampUp[u]*(t - separation)/numSamples);
u += numChannels;
}
o += numChannels;
}
}
}
// Just move the new samples in the output buffer to the pitch buffer
private void moveNewSamplesToPitchBuffer(
int originalNumOutputSamples)
{
int numSamples = numOutputSamples - originalNumOutputSamples;
if(numPitchSamples + numSamples > pitchBufferSize) {
pitchBufferSize += (pitchBufferSize >> 1) + numSamples;
pitchBuffer = resize(pitchBuffer, pitchBufferSize);
}
move(pitchBuffer, numPitchSamples, outputBuffer, originalNumOutputSamples, numSamples);
numOutputSamples = originalNumOutputSamples;
numPitchSamples += numSamples;
}
// Remove processed samples from the pitch buffer.
private void removePitchSamples(
int numSamples)
{
if(numSamples == 0) {
return;
}
move(pitchBuffer, 0, pitchBuffer, numSamples, numPitchSamples - numSamples);
numPitchSamples -= numSamples;
}
// Change the pitch. The latency this introduces could be reduced by looking at
// past samples to determine pitch, rather than future.
private void adjustPitch(
int originalNumOutputSamples)
{
int period, newPeriod, separation;
int position = 0;
if(numOutputSamples == originalNumOutputSamples) {
return;
}
moveNewSamplesToPitchBuffer(originalNumOutputSamples);
while(numPitchSamples - position >= maxRequired) {
period = findPitchPeriod(pitchBuffer, position, false);
newPeriod = (int)(period/pitch);
enlargeOutputBufferIfNeeded(newPeriod);
if(pitch >= 1.0f) {
overlapAdd(newPeriod, numChannels, outputBuffer, numOutputSamples, pitchBuffer,
position, pitchBuffer, position + period - newPeriod);
} else {
separation = newPeriod - period;
overlapAddWithSeparation(period, numChannels, separation, outputBuffer, numOutputSamples,
pitchBuffer, position, pitchBuffer, position);
}
numOutputSamples += newPeriod;
position += period;
}
removePitchSamples(position);
}
// Approximate the sinc function times a Hann window from the sinc table.
private int findSincCoefficient(int i, int ratio, int width) {
int lobePoints = (SINC_TABLE_SIZE-1)/SINC_FILTER_POINTS;
int left = i*lobePoints + (ratio*lobePoints)/width;
int right = left + 1;
int position = i*lobePoints*width + ratio*lobePoints - left*width;
int leftVal = sincTable[left];
int rightVal = sincTable[right];
return ((leftVal*(width - position) + rightVal*position) << 1)/width;
}
// Return 1 if value >= 0, else -1. This represents the sign of value.
private int getSign(int value) {
return value >= 0? 1 : -1;
}
// Interpolate the new output sample.
private short interpolate(
short in[],
int inPos, // Index to first sample which already includes channel offset.
int oldSampleRate,
int newSampleRate)
{
// Compute N-point sinc FIR-filter here. Clip rather than overflow.
int i;
int total = 0;
int position = newRatePosition*oldSampleRate;
int leftPosition = oldRatePosition*newSampleRate;
int rightPosition = (oldRatePosition + 1)*newSampleRate;
int ratio = rightPosition - position - 1;
int width = rightPosition - leftPosition;
int weight, value;
int oldSign;
int overflowCount = 0;
for (i = 0; i < SINC_FILTER_POINTS; i++) {
weight = findSincCoefficient(i, ratio, width);
/* printf("%u %f\n", i, weight); */
value = in[inPos + i*numChannels]*weight;
oldSign = getSign(total);
total += value;
if (oldSign != getSign(total) && getSign(value) == oldSign) {
/* We must have overflowed. This can happen with a sinc filter. */
overflowCount += oldSign;
}
}
/* It is better to clip than to wrap if there was a overflow. */
if (overflowCount > 0) {
return Short.MAX_VALUE;
} else if (overflowCount < 0) {
return Short.MIN_VALUE;
}
return (short)(total >> 16);
}
// Change the rate.
private void adjustRate(
float rate,
int originalNumOutputSamples)
{
int newSampleRate = (int)(sampleRate/rate);
int oldSampleRate = sampleRate;
int position;
int N = SINC_FILTER_POINTS;
// Set these values to help with the integer math
while(newSampleRate > (1 << 14) || oldSampleRate > (1 << 14)) {
newSampleRate >>= 1;
oldSampleRate >>= 1;
}
if(numOutputSamples == originalNumOutputSamples) {
return;
}
moveNewSamplesToPitchBuffer(originalNumOutputSamples);
// Leave at least N pitch samples in the buffer
for(position = 0; position < numPitchSamples - N; position++) {
while((oldRatePosition + 1)*newSampleRate > newRatePosition*oldSampleRate) {
enlargeOutputBufferIfNeeded(1);
for(int i = 0; i < numChannels; i++) {
outputBuffer[numOutputSamples*numChannels + i] = interpolate(pitchBuffer,
position*numChannels + i, oldSampleRate, newSampleRate);
}
newRatePosition++;
numOutputSamples++;
}
oldRatePosition++;
if(oldRatePosition == oldSampleRate) {
oldRatePosition = 0;
if(newRatePosition != newSampleRate) {
System.out.printf("Assertion failed: newRatePosition != newSampleRate\n");
assert false;
}
newRatePosition = 0;
}
}
removePitchSamples(position);
}
// Skip over a pitch period, and copy period/speed samples to the output
private int skipPitchPeriod(
short samples[],
int position,
float speed,
int period)
{
int newSamples;
if(speed >= 2.0f) {
newSamples = (int)(period/(speed - 1.0f));
} else {
newSamples = period;
remainingInputToCopy = (int)(period*(2.0f - speed)/(speed - 1.0f));
}
enlargeOutputBufferIfNeeded(newSamples);
overlapAdd(newSamples, numChannels, outputBuffer, numOutputSamples, samples, position,
samples, position + period);
numOutputSamples += newSamples;
return newSamples;
}
// Insert a pitch period, and determine how much input to copy directly.
private int insertPitchPeriod(
short samples[],
int position,
float speed,
int period)
{
int newSamples;
if(speed < 0.5f) {
newSamples = (int)(period*speed/(1.0f - speed));
} else {
newSamples = period;
remainingInputToCopy = (int)(period*(2.0f*speed - 1.0f)/(1.0f - speed));
}
enlargeOutputBufferIfNeeded(period + newSamples);
move(outputBuffer, numOutputSamples, samples, position, period);
overlapAdd(newSamples, numChannels, outputBuffer, numOutputSamples + period, samples,
position + period, samples, position);
numOutputSamples += period + newSamples;
return newSamples;
}
// Resample as many pitch periods as we have buffered on the input. Return 0 if
// we fail to resize an input or output buffer. Also scale the output by the volume.
private void changeSpeed(
float speed)
{
int numSamples = numInputSamples;
int position = 0, period, newSamples;
if(numInputSamples < maxRequired) {
return;
}
do {
if(remainingInputToCopy > 0) {
newSamples = copyInputToOutput(position);
position += newSamples;
} else {
period = findPitchPeriod(inputBuffer, position, true);
if(speed > 1.0) {
newSamples = skipPitchPeriod(inputBuffer, position, speed, period);
position += period + newSamples;
} else {
newSamples = insertPitchPeriod(inputBuffer, position, speed, period);
position += newSamples;
}
}
} while(position + maxRequired <= numSamples);
removeInputSamples(position);
}
// Resample as many pitch periods as we have buffered on the input. Scale the output by the volume.
private void processStreamInput()
{
int originalNumOutputSamples = numOutputSamples;
float s = speed/pitch;
float r = rate;
if(!useChordPitch) {
r *= pitch;
}
if(s > 1.00001 || s < 0.99999) {
changeSpeed(s);
} else {
copyToOutput(inputBuffer, 0, numInputSamples);
numInputSamples = 0;
}
if(useChordPitch) {
if(pitch != 1.0f) {
adjustPitch(originalNumOutputSamples);
}
} else if(r != 1.0f) {
adjustRate(r, originalNumOutputSamples);
}
if(volume != 1.0f) {
// Adjust output volume.
scaleSamples(outputBuffer, originalNumOutputSamples, numOutputSamples - originalNumOutputSamples,
volume);
}
}
// Write floating point data to the input buffer and process it.
public void writeFloatToStream(
float samples[],
int numSamples)