-
Notifications
You must be signed in to change notification settings - Fork 2
/
Copy pathcnn_model_1.py
142 lines (117 loc) · 5.08 KB
/
cnn_model_1.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
import os
from pathlib import Path
from sklearn.utils import shuffle
import matplotlib.pyplot as plt
import deepcompton
from deepcompton.utils import angular_separation
import tensorflow as tf
from tensorflow.keras.layers import Conv2D, MaxPool2D, BatchNormalization, Dense, Flatten
from sklearn.model_selection import train_test_split
import numpy as np
import pickle as pkl
def angular_loss(y_true, y_pred):
return -1. * (tf.math.sin(y_true[:,0])*tf.math.sin(y_pred[:,0])*
tf.math.cos(y_true[:,1]-y_pred[:,1])+
tf.math.cos(y_pred[:,0])*tf.math.cos(y_true[:,0]))
def angle(yt,yp):
return tf.math.acos(-1.*angular_loss(yt,yp)) * 180. / np.pi
from sklearn.preprocessing import scale
def standardize(x):
flat_x=[]
for i in range(x.shape[0]):
flat_x.append(x[i].flatten())
flat_x=np.array(flat_x)
flat_x = scale(flat_x)
new_x = [flat_x[i].reshape(180,45,1) for i in range(flat_x.shape[0])]
new_x = np.array(new_x)
return x
class BaseModel1:
def __init__(self, name="model", lr=1.e-4, max_epochs=1000, patience = 1):
self.name = name
self.lr = lr
self.max_epochs = max_epochs
self.patience = patience
def get_model(self):
model = tf.keras.Sequential()
model.add(Conv2D(32,3,input_shape=(180,45,1), activation="relu"))
#model.add(MaxPool2D((2,2)))
model.add(BatchNormalization())
model.add(Conv2D(64,3, activation="relu"))
#model.add(MaxPool2D((2,2)))
model.add(BatchNormalization())
model.add(Conv2D(128,3, activation="relu"))
model.add(BatchNormalization())
model.add(Conv2D(256,3, activation="relu"))
model.add(BatchNormalization())
model.add(Flatten())
model.add(Dense(512,activation="relu"))
model.add(BatchNormalization())
model.add(Dense(256,activation="relu"))
model.add(BatchNormalization())
model.add(Dense(128,activation="relu"))
model.add(BatchNormalization())
model.add(Dense(64,activation="relu"))
model.add(BatchNormalization())
model.add(Dense(2, activation="relu"))
return model
def train(self, x_train, y_train, x_test, y_test):
if not os.path.exists("./models/{}".format(self.name)):
os.system("mkdir -p ./models/{}".format(self.name))
callbacks =[
tf.keras.callbacks.ModelCheckpoint("./models/{}/weights.hdf5".format(self.name), monitor="val_loss"),
tf.keras.callbacks.EarlyStopping(monitor="val_loss", patience=self.patience),
]
model = self.get_model()
model.compile(
optimizer = tf.keras.optimizers.Adam(self.lr),
loss=angular_loss,
metrics=[angular_loss,"mean_squared_error",angle],
)
hist = model.fit(x_train, y_train, batch_size=256, epochs=self.max_epochs, callbacks=callbacks, validation_split=.2)
# save the history
pkl.dump(hist.history, open("./models/{}/hist.pkl".format(self.name), "wb"))
self.make_test_outputs(model, x_test, y_test, hist)
def make_test_outputs(self, model, x_test, y_test, history):
y_pred = model(x_test).numpy()
angular_seps=angular_separation(y_test[:,0],y_test[:,1],y_pred[:,0],y_pred[:,1]) * 180. / np.pi
angular_seps = np.array(angular_seps)
plt.figure()
plt.hist(angular_seps, bins=100)
print("Mean angular separation : {}".format(np.mean(angular_seps)))
plt.title("Angular separation after training {}".format(self.name))
plt.xlabel("Angular separation (deg)")
plt.savefig("./models/{}/angular_separation_distribution.png".format(self.name))
plt.figure()
plt.plot(history.history["loss"], label="loss")
plt.plot(history.history["val_loss"], label="val_loss")
plt.title("Training loss")
plt.xlabel("Epochs")
plt.ylabel("Loss")
plt.savefig("./models/{}/loss.png".format(self.name))
plt.figure()
plt.plot(history.history["angle"], label="separation")
plt.plot(history.history["val_angle"], label="val_separation")
plt.title("Angular separation")
plt.xlabel("Epochs")
plt.ylabel("Angular separation (deg)")
plt.savefig("./models/{}/angular_separation.png".format(self.name))
#from deepcompton.datasets.single_source_densities import SingleSourceDensityDataset
if __name__=="__main__":
import sys
name = sys.argv[1]
lr = float(sys.argv[2])
maxep = int(sys.argv[3])
patience = int(sys.argv[4])
# load the data here
datapath = "UncertaintiesDataset.pkl"
x,y= pkl.load(open(datapath, "rb"))
x = np.array(x).reshape(len(x),180,45,1)
y = np.radians(np.array(y))[:,:2]
# standardize the data
x = standardize(x)
# train and testing data
x_train,x_test, y_train,y_test = train_test_split(x, y, shuffle=True)
y_train = tf.convert_to_tensor(y_train)
x_train = tf.convert_to_tensor(x_train)
m = BaseModel1(name, lr, maxep, patience)
m.train(x_train, y_train, x_test, y_test)