-
Notifications
You must be signed in to change notification settings - Fork 0
/
training_results_5.txt
364 lines (361 loc) · 19.8 KB
/
training_results_5.txt
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
batch_size 100, epochs 20, learning rate 0.0005, coeff kld 1.0, coeff kd0.05
train epoch 0, iteration 0, loss -1.8003628253936768
validation epoch 0, iteration 0, loss 2.1618870208740235
train epoch 0, iteration 50, loss -4.526707172393799
train epoch 0, iteration 100, loss -5.090345859527588
validation epoch 0, iteration 100, loss 0.3879250436782837
train epoch 0, iteration 150, loss -5.30631685256958
train epoch 0, iteration 200, loss -5.623846054077148
validation epoch 0, iteration 200, loss 0.3205682123184204
train epoch 0, iteration 250, loss -5.907204627990723
train epoch 0, iteration 300, loss -6.102419853210449
validation epoch 0, iteration 300, loss 0.2753933958053589
train epoch 0, iteration 350, loss -6.299673557281494
train epoch 0, iteration 400, loss -6.319742202758789
validation epoch 0, iteration 400, loss 0.24642979555130004
train epoch 0, iteration 450, loss -6.508595943450928
train epoch 0, iteration 500, loss -6.643072605133057
validation epoch 0, iteration 500, loss 0.22222358236312867
train epoch 0, iteration 550, loss -6.731970310211182
train epoch 1, iteration 0, loss -6.901034832000732
validation epoch 1, iteration 0, loss 0.21759348602294923
train epoch 1, iteration 50, loss -6.991998672485352
train epoch 1, iteration 100, loss -7.0601372718811035
validation epoch 1, iteration 100, loss 0.19072071313858033
train epoch 1, iteration 150, loss -7.177309989929199
train epoch 1, iteration 200, loss -7.239438533782959
validation epoch 1, iteration 200, loss 0.18285511465072632
train epoch 1, iteration 250, loss -7.372522830963135
train epoch 1, iteration 300, loss -7.287930011749268
validation epoch 1, iteration 300, loss 0.16645979866981506
train epoch 1, iteration 350, loss -7.311141490936279
train epoch 1, iteration 400, loss -7.481696605682373
validation epoch 1, iteration 400, loss 0.16042842359542847
train epoch 1, iteration 450, loss -7.543111801147461
train epoch 1, iteration 500, loss -7.637357234954834
validation epoch 1, iteration 500, loss 0.1547886302947998
train epoch 1, iteration 550, loss -7.81208610534668
train epoch 2, iteration 0, loss -7.713595390319824
validation epoch 2, iteration 0, loss 0.15123223156929017
train epoch 2, iteration 50, loss -7.8711090087890625
train epoch 2, iteration 100, loss -7.771455764770508
validation epoch 2, iteration 100, loss 0.14360484313964844
train epoch 2, iteration 150, loss -7.900735855102539
train epoch 2, iteration 200, loss -7.949425220489502
validation epoch 2, iteration 200, loss 0.14231696348190306
train epoch 2, iteration 250, loss -7.992465496063232
train epoch 2, iteration 300, loss -8.10110092163086
validation epoch 2, iteration 300, loss 0.1463805561065674
train epoch 2, iteration 350, loss -8.149859428405762
train epoch 2, iteration 400, loss -8.13045883178711
validation epoch 2, iteration 400, loss 0.13441402020454407
train epoch 2, iteration 450, loss -8.229940414428711
train epoch 2, iteration 500, loss -8.218094825744629
validation epoch 2, iteration 500, loss 0.13273042874336244
train epoch 2, iteration 550, loss -8.228885650634766
train epoch 3, iteration 0, loss -8.249996185302734
validation epoch 3, iteration 0, loss 0.1330848457813263
train epoch 3, iteration 50, loss -8.313355445861816
train epoch 3, iteration 100, loss -8.329629898071289
validation epoch 3, iteration 100, loss 0.1279837119579315
train epoch 3, iteration 150, loss -8.291913986206055
train epoch 3, iteration 200, loss -8.311614036560059
validation epoch 3, iteration 200, loss 0.13364289135932922
train epoch 3, iteration 250, loss -8.31200885772705
train epoch 3, iteration 300, loss -8.396551132202148
validation epoch 3, iteration 300, loss 0.1260497296333313
train epoch 3, iteration 350, loss -8.413890838623047
train epoch 3, iteration 400, loss -8.375961303710938
validation epoch 3, iteration 400, loss 0.13132587628364564
train epoch 3, iteration 450, loss -8.441173553466797
train epoch 3, iteration 500, loss -8.449315071105957
validation epoch 3, iteration 500, loss 0.12423564105033874
train epoch 3, iteration 550, loss -8.467358589172363
train epoch 4, iteration 0, loss -8.50452995300293
validation epoch 4, iteration 0, loss 0.12452864890098572
train epoch 4, iteration 50, loss -8.458579063415527
train epoch 4, iteration 100, loss -8.525930404663086
validation epoch 4, iteration 100, loss 0.12413642029762267
train epoch 4, iteration 150, loss -8.42490005493164
train epoch 4, iteration 200, loss -8.48728084564209
validation epoch 4, iteration 200, loss 0.12145660810470581
train epoch 4, iteration 250, loss -8.532938957214355
train epoch 4, iteration 300, loss -8.573719024658203
validation epoch 4, iteration 300, loss 0.12167481935024262
train epoch 4, iteration 350, loss -8.56395435333252
train epoch 4, iteration 400, loss -8.536321640014648
validation epoch 4, iteration 400, loss 0.11185540528297425
train epoch 4, iteration 450, loss -8.611739158630371
train epoch 4, iteration 500, loss -8.564041137695312
validation epoch 4, iteration 500, loss 0.1166733077287674
train epoch 4, iteration 550, loss -8.63121223449707
train epoch 5, iteration 0, loss -8.595107078552246
validation epoch 5, iteration 0, loss 0.11692457962036133
train epoch 5, iteration 50, loss -8.682768821716309
train epoch 5, iteration 100, loss -8.650444030761719
validation epoch 5, iteration 100, loss 0.1179691333770752
train epoch 5, iteration 150, loss -8.663289070129395
train epoch 5, iteration 200, loss -8.639005661010742
validation epoch 5, iteration 200, loss 0.11387639849185943
train epoch 5, iteration 250, loss -8.617090225219727
train epoch 5, iteration 300, loss -8.651535034179688
validation epoch 5, iteration 300, loss 0.11435565390586853
train epoch 5, iteration 350, loss -8.659552574157715
train epoch 5, iteration 400, loss -8.71743106842041
validation epoch 5, iteration 400, loss 0.1143564619064331
train epoch 5, iteration 450, loss -8.722111701965332
train epoch 5, iteration 500, loss -8.699301719665527
validation epoch 5, iteration 500, loss 0.11034794373512267
train epoch 5, iteration 550, loss -8.661450386047363
train epoch 6, iteration 0, loss -8.771980285644531
validation epoch 6, iteration 0, loss 0.11524012551307679
train epoch 6, iteration 50, loss -8.733223915100098
train epoch 6, iteration 100, loss -8.739850997924805
validation epoch 6, iteration 100, loss 0.10838396883010865
train epoch 6, iteration 150, loss -8.760782241821289
train epoch 6, iteration 200, loss -8.75967025756836
validation epoch 6, iteration 200, loss 0.10726783728599548
train epoch 6, iteration 250, loss -8.71408462524414
train epoch 6, iteration 300, loss -8.73879623413086
validation epoch 6, iteration 300, loss 0.1111149766921997
train epoch 6, iteration 350, loss -8.813980102539062
train epoch 6, iteration 400, loss -8.839070320129395
validation epoch 6, iteration 400, loss 0.11277338252067566
train epoch 6, iteration 450, loss -8.799162864685059
train epoch 6, iteration 500, loss -8.809688568115234
validation epoch 6, iteration 500, loss 0.11237966871261597
train epoch 6, iteration 550, loss -8.816023826599121
train epoch 7, iteration 0, loss -8.835638999938965
validation epoch 7, iteration 0, loss 0.11263691301345825
train epoch 7, iteration 50, loss -8.851750373840332
train epoch 7, iteration 100, loss -8.807729721069336
validation epoch 7, iteration 100, loss 0.1065126965045929
train epoch 7, iteration 150, loss -8.85871696472168
train epoch 7, iteration 200, loss -8.889650344848633
validation epoch 7, iteration 200, loss 0.10619748878479005
train epoch 7, iteration 250, loss -8.855463027954102
train epoch 7, iteration 300, loss -8.836962699890137
validation epoch 7, iteration 300, loss 0.10640862679481507
train epoch 7, iteration 350, loss -8.88547134399414
train epoch 7, iteration 400, loss -8.90353012084961
validation epoch 7, iteration 400, loss 0.1088100426197052
train epoch 7, iteration 450, loss -8.917027473449707
train epoch 7, iteration 500, loss -8.898200035095215
validation epoch 7, iteration 500, loss 0.1062750801563263
train epoch 7, iteration 550, loss -8.810306549072266
train epoch 8, iteration 0, loss -8.907299995422363
validation epoch 8, iteration 0, loss 0.1124307309627533
train epoch 8, iteration 50, loss -8.95766544342041
train epoch 8, iteration 100, loss -8.939127922058105
validation epoch 8, iteration 100, loss 0.10447269864082337
train epoch 8, iteration 150, loss -8.926042556762695
train epoch 8, iteration 200, loss -8.914953231811523
validation epoch 8, iteration 200, loss 0.10492038402557373
train epoch 8, iteration 250, loss -8.978219985961914
train epoch 8, iteration 300, loss -8.966609954833984
validation epoch 8, iteration 300, loss 0.10965713858604431
train epoch 8, iteration 350, loss -8.973231315612793
train epoch 8, iteration 400, loss -8.936059951782227
validation epoch 8, iteration 400, loss 0.10521797454357147
train epoch 8, iteration 450, loss -8.922342300415039
train epoch 8, iteration 500, loss -8.966737747192383
validation epoch 8, iteration 500, loss 0.10171269922256469
train epoch 8, iteration 550, loss -8.991761207580566
train epoch 9, iteration 0, loss -8.953351974487305
validation epoch 9, iteration 0, loss 0.10585487999916077
train epoch 9, iteration 50, loss -8.948047637939453
train epoch 9, iteration 100, loss -8.977762222290039
validation epoch 9, iteration 100, loss 0.09941991639137268
train epoch 9, iteration 150, loss -8.958634376525879
train epoch 9, iteration 200, loss -9.01843547821045
validation epoch 9, iteration 200, loss 0.10123306012153625
train epoch 9, iteration 250, loss -8.9755277633667
train epoch 9, iteration 300, loss -8.98922061920166
validation epoch 9, iteration 300, loss 0.10580991640090942
train epoch 9, iteration 350, loss -9.017277717590332
train epoch 9, iteration 400, loss -9.022811889648438
validation epoch 9, iteration 400, loss 0.10246370949745179
train epoch 9, iteration 450, loss -9.01632308959961
train epoch 9, iteration 500, loss -9.017009735107422
validation epoch 9, iteration 500, loss 0.09933711750507354
train epoch 9, iteration 550, loss -9.03606128692627
train epoch 10, iteration 0, loss -9.017366409301758
validation epoch 10, iteration 0, loss 0.0988033625125885
train epoch 10, iteration 50, loss -9.030941009521484
train epoch 10, iteration 100, loss -9.048175811767578
validation epoch 10, iteration 100, loss 0.10298779075145721
train epoch 10, iteration 150, loss -9.015069007873535
train epoch 10, iteration 200, loss -9.02473258972168
validation epoch 10, iteration 200, loss 0.10112308778762817
train epoch 10, iteration 250, loss -9.05268669128418
train epoch 10, iteration 300, loss -9.028521537780762
validation epoch 10, iteration 300, loss 0.10028535728454589
train epoch 10, iteration 350, loss -9.055228233337402
train epoch 10, iteration 400, loss -8.993536949157715
validation epoch 10, iteration 400, loss 0.10193371007442474
train epoch 10, iteration 450, loss -9.042463302612305
train epoch 10, iteration 500, loss -9.045547485351562
validation epoch 10, iteration 500, loss 0.09715341715812684
train epoch 10, iteration 550, loss -9.06839370727539
train epoch 11, iteration 0, loss -9.028421401977539
validation epoch 11, iteration 0, loss 0.09756690299510956
train epoch 11, iteration 50, loss -9.04887866973877
train epoch 11, iteration 100, loss -9.068862915039062
validation epoch 11, iteration 100, loss 0.09875779871940613
train epoch 11, iteration 150, loss -9.081514358520508
train epoch 11, iteration 200, loss -9.067434310913086
validation epoch 11, iteration 200, loss 0.09718375005722046
train epoch 11, iteration 250, loss -9.064078330993652
train epoch 11, iteration 300, loss -9.058513641357422
validation epoch 11, iteration 300, loss 0.10164566950798035
train epoch 11, iteration 350, loss -9.084086418151855
train epoch 11, iteration 400, loss -9.090652465820312
validation epoch 11, iteration 400, loss 0.10011177916526795
train epoch 11, iteration 450, loss -9.036077499389648
train epoch 11, iteration 500, loss -9.112567901611328
validation epoch 11, iteration 500, loss 0.10062122225761413
train epoch 11, iteration 550, loss -9.09057331085205
train epoch 12, iteration 0, loss -9.063344955444336
validation epoch 12, iteration 0, loss 0.09965221264362335
train epoch 12, iteration 50, loss -9.108386039733887
train epoch 12, iteration 100, loss -9.121910095214844
validation epoch 12, iteration 100, loss 0.09691495895385742
train epoch 12, iteration 150, loss -9.084612846374512
train epoch 12, iteration 200, loss -9.122882843017578
validation epoch 12, iteration 200, loss 0.09901722774505615
train epoch 12, iteration 250, loss -9.10472297668457
train epoch 12, iteration 300, loss -9.114385604858398
validation epoch 12, iteration 300, loss 0.0992529809474945
train epoch 12, iteration 350, loss -9.076458930969238
train epoch 12, iteration 400, loss -9.09630012512207
validation epoch 12, iteration 400, loss 0.09475022258758545
train epoch 12, iteration 450, loss -9.13158130645752
train epoch 12, iteration 500, loss -9.087663650512695
validation epoch 12, iteration 500, loss 0.09365778961181641
train epoch 12, iteration 550, loss -9.094086647033691
train epoch 13, iteration 0, loss -9.097251892089844
validation epoch 13, iteration 0, loss 0.09727269992828369
train epoch 13, iteration 50, loss -9.115004539489746
train epoch 13, iteration 100, loss -9.101948738098145
validation epoch 13, iteration 100, loss 0.09673593323230743
train epoch 13, iteration 150, loss -9.136221885681152
train epoch 13, iteration 200, loss -9.110892295837402
validation epoch 13, iteration 200, loss 0.09368156309127808
train epoch 13, iteration 250, loss -9.119604110717773
train epoch 13, iteration 300, loss -9.12198543548584
validation epoch 13, iteration 300, loss 0.0981106142282486
train epoch 13, iteration 350, loss -9.081604957580566
train epoch 13, iteration 400, loss -9.092621803283691
validation epoch 13, iteration 400, loss 0.09552936935424805
train epoch 13, iteration 450, loss -9.117709159851074
train epoch 13, iteration 500, loss -9.104504585266113
validation epoch 13, iteration 500, loss 0.09527940292358399
train epoch 13, iteration 550, loss -9.112903594970703
train epoch 14, iteration 0, loss -9.079280853271484
validation epoch 14, iteration 0, loss 0.0936729156255722
train epoch 14, iteration 50, loss -9.13895034790039
train epoch 14, iteration 100, loss -9.134514808654785
validation epoch 14, iteration 100, loss 0.08987820689678191
train epoch 14, iteration 150, loss -9.128893852233887
train epoch 14, iteration 200, loss -9.093853950500488
validation epoch 14, iteration 200, loss 0.09620773515701293
train epoch 14, iteration 250, loss -9.119694709777832
train epoch 14, iteration 300, loss -9.09142017364502
validation epoch 14, iteration 300, loss 0.09232533385753632
train epoch 14, iteration 350, loss -9.117673873901367
train epoch 14, iteration 400, loss -9.126744270324707
validation epoch 14, iteration 400, loss 0.0959748239994049
train epoch 14, iteration 450, loss -9.130977630615234
train epoch 14, iteration 500, loss -9.134196281433105
validation epoch 14, iteration 500, loss 0.09870004000663757
train epoch 14, iteration 550, loss -9.139204978942871
train epoch 15, iteration 0, loss -9.108657836914062
validation epoch 15, iteration 0, loss 0.09139484274387359
train epoch 15, iteration 50, loss -9.128244400024414
train epoch 15, iteration 100, loss -9.11612606048584
validation epoch 15, iteration 100, loss 0.09530593466758729
train epoch 15, iteration 150, loss -9.13205337524414
train epoch 15, iteration 200, loss -9.125336647033691
validation epoch 15, iteration 200, loss 0.09221137664318085
train epoch 15, iteration 250, loss -9.114595413208008
train epoch 15, iteration 300, loss -9.130066871643066
validation epoch 15, iteration 300, loss 0.09234902787208557
train epoch 15, iteration 350, loss -9.104535102844238
train epoch 15, iteration 400, loss -9.117732048034668
validation epoch 15, iteration 400, loss 0.09241513466835022
train epoch 15, iteration 450, loss -9.104253768920898
train epoch 15, iteration 500, loss -9.091139793395996
validation epoch 15, iteration 500, loss 0.09123619246482849
train epoch 15, iteration 550, loss -9.152532577514648
train epoch 16, iteration 0, loss -9.120587348937988
validation epoch 16, iteration 0, loss 0.09383298983573914
train epoch 16, iteration 50, loss -9.159860610961914
train epoch 16, iteration 100, loss -9.131597518920898
validation epoch 16, iteration 100, loss 0.08995740339756012
train epoch 16, iteration 150, loss -9.133645057678223
train epoch 16, iteration 200, loss -9.147809028625488
validation epoch 16, iteration 200, loss 0.08788915543556214
train epoch 16, iteration 250, loss -9.119054794311523
train epoch 16, iteration 300, loss -9.135538101196289
validation epoch 16, iteration 300, loss 0.08985323009490967
train epoch 16, iteration 350, loss -9.134525299072266
train epoch 16, iteration 400, loss -9.138108253479004
validation epoch 16, iteration 400, loss 0.08974036898612976
train epoch 16, iteration 450, loss -9.1327486038208
train epoch 16, iteration 500, loss -9.127461433410645
validation epoch 16, iteration 500, loss 0.0913217830657959
train epoch 16, iteration 550, loss -9.14348030090332
train epoch 17, iteration 0, loss -9.14965534210205
validation epoch 17, iteration 0, loss 0.08873686878681183
train epoch 17, iteration 50, loss -9.150964736938477
train epoch 17, iteration 100, loss -9.123659133911133
validation epoch 17, iteration 100, loss 0.0879955857515335
train epoch 17, iteration 150, loss -9.14603042602539
train epoch 17, iteration 200, loss -9.143973350524902
validation epoch 17, iteration 200, loss 0.09121859960556031
train epoch 17, iteration 250, loss -9.107264518737793
train epoch 17, iteration 300, loss -9.140885353088379
validation epoch 17, iteration 300, loss 0.08954077460765839
train epoch 17, iteration 350, loss -9.134537696838379
train epoch 17, iteration 400, loss -9.130047798156738
validation epoch 17, iteration 400, loss 0.084409441447258
train epoch 17, iteration 450, loss -9.147250175476074
train epoch 17, iteration 500, loss -9.150968551635742
validation epoch 17, iteration 500, loss 0.08654607431888581
train epoch 17, iteration 550, loss -9.143199920654297
train epoch 18, iteration 0, loss -9.150920867919922
validation epoch 18, iteration 0, loss 0.08858001637458801
train epoch 18, iteration 50, loss -9.154706001281738
train epoch 18, iteration 100, loss -9.165905952453613
validation epoch 18, iteration 100, loss 0.0855479608297348
train epoch 18, iteration 150, loss -9.136301040649414
train epoch 18, iteration 200, loss -9.164331436157227
validation epoch 18, iteration 200, loss 0.08681991410255432
train epoch 18, iteration 250, loss -9.149334907531738
train epoch 18, iteration 300, loss -9.101737022399902
validation epoch 18, iteration 300, loss 0.08818478333950043
train epoch 18, iteration 350, loss -9.146021842956543
train epoch 18, iteration 400, loss -9.150954246520996
validation epoch 18, iteration 400, loss 0.08561320428848267
train epoch 18, iteration 450, loss -9.110116004943848
train epoch 18, iteration 500, loss -9.1494779586792
validation epoch 18, iteration 500, loss 0.08492194962501526
train epoch 18, iteration 550, loss -9.130459785461426
train epoch 19, iteration 0, loss -9.139537811279297
validation epoch 19, iteration 0, loss 0.08393071756362915
train epoch 19, iteration 50, loss -9.139875411987305
train epoch 19, iteration 100, loss -9.141079902648926
validation epoch 19, iteration 100, loss 0.08428394632339478
train epoch 19, iteration 150, loss -9.137408256530762
train epoch 19, iteration 200, loss -9.140259742736816
validation epoch 19, iteration 200, loss 0.08541209042072297
train epoch 19, iteration 250, loss -9.104130744934082
train epoch 19, iteration 300, loss -9.149384498596191
validation epoch 19, iteration 300, loss 0.08576177575588226
train epoch 19, iteration 350, loss -9.1503267288208
train epoch 19, iteration 400, loss -9.131139755249023
validation epoch 19, iteration 400, loss 0.08617048621177674
train epoch 19, iteration 450, loss -9.157363891601562
train epoch 19, iteration 500, loss -9.138288497924805
validation epoch 19, iteration 500, loss 0.0843037534236908
train epoch 19, iteration 550, loss -9.141509056091309