Skip to content
New issue

Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.

By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.

Already on GitHub? Sign in to your account

fp64 shader emulation not working under Apple M1 Max #1764

Open
Swoorup opened this issue Jul 11, 2023 · 10 comments
Open

fp64 shader emulation not working under Apple M1 Max #1764

Swoorup opened this issue Jul 11, 2023 · 10 comments
Labels
Milestone

Comments

@Swoorup
Copy link

Swoorup commented Jul 11, 2023

Using the fp64 modules, it appears as the precision are lost under Apple M1 MAX, as if I were using fp32. The values sent to the shader do appear correct. I am not sure of the best way to reproduce as it works across an older Intel laptop or my linux PC.

Curious if anyone has encountered the same.

@ibgreen ibgreen added the bug label Jul 11, 2023
@ibgreen
Copy link
Collaborator

ibgreen commented Jul 11, 2023

Yes I have noticed this as well, but haven't had time to look into it.

The problem is generally that the GPU drivers (shader compilers) optimize the shaders so aggressively that they disable the required computational tricks.

I believe that there is a flag for nVidia to add additional workarounds to prevent optimization and I did make a quick try at enabling that for apple chips without success.

Someone may need to do a deeper dive here.

@Swoorup
Copy link
Author

Swoorup commented Jul 13, 2023

Interestingly this simple example doesn't work either
https://prideout.net/emulating-double-precision

@Swoorup
Copy link
Author

Swoorup commented Jul 15, 2023

Btw I got it fixed (temporarily?) using a workaround invariant gl_Position
mentioned in here: https://bugs.webkit.org/show_bug.cgi?id=237434

@ibgreen
Copy link
Collaborator

ibgreen commented Jul 17, 2023

@Swoorup That sounds very promising, thanks for researching the issue!

@donmccurdy
Copy link
Collaborator

Someone may need to do a deeper dive here.

I can reproduce the issue at https://prideout.net/emulating-double-precision on an Apple M2 Pro with macOS 14 Sonoma, but I'm not sure where to start digging into the issue on visgl. Is that still of interest, and would someone be able to share an example or failing unit test? Thanks!

@ibgreen
Copy link
Collaborator

ibgreen commented Nov 30, 2023

We should re-enable the tests in luma.gl and then we should check if @Swoorup 's suggestion in this thread works.

@donmccurdy
Copy link
Collaborator

donmccurdy commented Dec 15, 2023

Update – With lots of development toward v9, the Transform class was a bit behind and FP64 tests couldn't run without that. I've got a minimal version of Transform running again, and have restored the FP64 tests in #1879. With that we can reproduce the problem easily here.

I'd hoped adding invariant varying vec2 result;...

function getBinaryShader(operation: string): string {
const shader = `\
attribute vec2 a;
attribute vec2 b;
varying vec2 result;
void main(void) {
result = ${operation}(a, b);
}
`;
return shader;
}

... would fix the problem on Apple GPUs, but unfortunately I don't see any change on my device (Apple M2 Pro). To re-enable any of the failing tests on Apple GPUs and reproduce the failure, just edit the test cases here ...

const commonTestCases = [
{a: 2, b: 2},
{a: 0.1, b: 0.1, ignoreFor: {apple: ['sum_fp64', 'mul_fp64', 'div_fp64']}},
{a: 3.0e-19, b: 3.3e13, ignoreFor: {apple: ['sum_fp64']}},

... and run yarn test browser. I've also tried switching over to some other fp64 arithmetic implementations, found in https://blog.cyclemap.link/2011-06-09-glsl-part2-emu/, but the results were slightly worse than our current state. I've forced the Choose ANGLE graphics backend option to "Metal" in chrome://flags/, to ensure it doesn't switch back to OpenGL.

Here's a complete vertex shader from one of these tests:

fp64.vert.glsl
#version 100

#define SHADER_NAME transform-model_vertex

#define SHADER_TYPE_VERTEX
#define APPLE_GPU
// Apple optimizes away the calculation necessary for emulated fp64
#define LUMA_FP64_CODE_ELIMINATION_WORKAROUND 1
#define LUMA_FP32_TAN_PRECISION_WORKAROUND 1
// Intel GPU doesn't have full 32 bits precision in same cases, causes overflow
#define LUMA_FP64_HIGH_BITS_OVERFLOW_WORKAROUND 1

#if (__VERSION__ > 120)
# define FEATURE_GLSL_DERIVATIVES
# define FEATURE_GLSL_DRAW_BUFFERS
# define FEATURE_GLSL_FRAG_DEPTH
# define FEATURE_GLSL_TEXTURE_LOD
#endif // __VERSION




#define MODULE_FP64_ARITHMETIC
uniform float ONE;

/*
About LUMA_FP64_CODE_ELIMINATION_WORKAROUND

The purpose of this workaround is to prevent shader compilers from
optimizing away necessary arithmetic operations by swapping their sequences
or transform the equation to some 'equivalent' from.

The method is to multiply an artifical variable, ONE, which will be known to
the compiler to be 1 only at runtime. The whole expression is then represented
as a polynomial with respective to ONE. In the coefficients of all terms, only one a
and one b should appear

err = (a + b) * ONE^6 - a * ONE^5 - (a + b) * ONE^4 + a * ONE^3 - b - (a + b) * ONE^2 + a * ONE
*/

// Divide float number to high and low floats to extend fraction bits
vec2 split(float a) {
  const float SPLIT = 4097.0;
  float t = a * SPLIT;
#if defined(LUMA_FP64_CODE_ELIMINATION_WORKAROUND)
  float a_hi = t * ONE - (t - a);
  float a_lo = a * ONE - a_hi;
#else
  float a_hi = t - (t - a);
  float a_lo = a - a_hi;
#endif
  return vec2(a_hi, a_lo);
}

// Divide float number again when high float uses too many fraction bits
vec2 split2(vec2 a) {
  vec2 b = split(a.x);
  b.y += a.y;
  return b;
}

// Special sum operation when a > b
vec2 quickTwoSum(float a, float b) {
#if defined(LUMA_FP64_CODE_ELIMINATION_WORKAROUND)
  float sum = (a + b) * ONE;
  float err = b - (sum - a) * ONE;
#else
  float sum = a + b;
  float err = b - (sum - a);
#endif
  return vec2(sum, err);
}

// General sum operation
vec2 twoSum(float a, float b) {
  float s = (a + b);
#if defined(LUMA_FP64_CODE_ELIMINATION_WORKAROUND)
  float v = (s * ONE - a) * ONE;
  float err = (a - (s - v) * ONE) * ONE * ONE * ONE + (b - v);
#else
  float v = s - a;
  float err = (a - (s - v)) + (b - v);
#endif
  return vec2(s, err);
}

vec2 twoSub(float a, float b) {
  float s = (a - b);
#if defined(LUMA_FP64_CODE_ELIMINATION_WORKAROUND)
  float v = (s * ONE - a) * ONE;
  float err = (a - (s - v) * ONE) * ONE * ONE * ONE - (b + v);
#else
  float v = s - a;
  float err = (a - (s - v)) - (b + v);
#endif
  return vec2(s, err);
}

vec2 twoSqr(float a) {
  float prod = a * a;
  vec2 a_fp64 = split(a);
#if defined(LUMA_FP64_CODE_ELIMINATION_WORKAROUND)
  float err = ((a_fp64.x * a_fp64.x - prod) * ONE + 2.0 * a_fp64.x *
    a_fp64.y * ONE * ONE) + a_fp64.y * a_fp64.y * ONE * ONE * ONE;
#else
  float err = ((a_fp64.x * a_fp64.x - prod) + 2.0 * a_fp64.x * a_fp64.y) + a_fp64.y * a_fp64.y;
#endif
  return vec2(prod, err);
}

vec2 twoProd(float a, float b) {
  float prod = a * b;
  vec2 a_fp64 = split(a);
  vec2 b_fp64 = split(b);
  float err = ((a_fp64.x * b_fp64.x - prod) + a_fp64.x * b_fp64.y +
    a_fp64.y * b_fp64.x) + a_fp64.y * b_fp64.y;
  return vec2(prod, err);
}

vec2 sum_fp64(vec2 a, vec2 b) {
  vec2 s, t;
  s = twoSum(a.x, b.x);
  t = twoSum(a.y, b.y);
  s.y += t.x;
  s = quickTwoSum(s.x, s.y);
  s.y += t.y;
  s = quickTwoSum(s.x, s.y);
  return s;
}

vec2 sub_fp64(vec2 a, vec2 b) {
  vec2 s, t;
  s = twoSub(a.x, b.x);
  t = twoSub(a.y, b.y);
  s.y += t.x;
  s = quickTwoSum(s.x, s.y);
  s.y += t.y;
  s = quickTwoSum(s.x, s.y);
  return s;
}

vec2 mul_fp64(vec2 a, vec2 b) {
  vec2 prod = twoProd(a.x, b.x);
  // y component is for the error
  prod.y += a.x * b.y;
#if defined(LUMA_FP64_HIGH_BITS_OVERFLOW_WORKAROUND)
  prod = split2(prod);
#endif
  prod = quickTwoSum(prod.x, prod.y);
  prod.y += a.y * b.x;
#if defined(LUMA_FP64_HIGH_BITS_OVERFLOW_WORKAROUND)
  prod = split2(prod);
#endif
  prod = quickTwoSum(prod.x, prod.y);
  return prod;
}

vec2 div_fp64(vec2 a, vec2 b) {
  float xn = 1.0 / b.x;
#if defined(LUMA_FP64_HIGH_BITS_OVERFLOW_WORKAROUND)
  vec2 yn = mul_fp64(a, vec2(xn, 0));
#else
  vec2 yn = a * xn;
#endif
  float diff = (sub_fp64(a, mul_fp64(b, yn))).x;
  vec2 prod = twoProd(xn, diff);
  return sum_fp64(yn, prod);
}

vec2 sqrt_fp64(vec2 a) {
  if (a.x == 0.0 && a.y == 0.0) return vec2(0.0, 0.0);
  if (a.x < 0.0) return vec2(0.0 / 0.0, 0.0 / 0.0);

  float x = 1.0 / sqrt(a.x);
  float yn = a.x * x;
#if defined(LUMA_FP64_CODE_ELIMINATION_WORKAROUND)
  vec2 yn_sqr = twoSqr(yn) * ONE;
#else
  vec2 yn_sqr = twoSqr(yn);
#endif
  float diff = sub_fp64(a, yn_sqr).x;
  vec2 prod = twoProd(x * 0.5, diff);
#if defined(LUMA_FP64_HIGH_BITS_OVERFLOW_WORKAROUND)
  return sum_fp64(split(yn), prod);
#else
  return sum_fp64(vec2(yn, 0.0), prod);
#endif
}
// END MODULE_fp64-arithmetic

#define MODULE_FP64
const vec2 E_FP64 = vec2(2.7182817459106445e+00, 8.254840366817007e-08);
const vec2 LOG2_FP64 = vec2(0.6931471824645996e+00, -1.9046542121259336e-09);
const vec2 PI_FP64 = vec2(3.1415927410125732, -8.742278012618954e-8);
const vec2 TWO_PI_FP64 = vec2(6.2831854820251465, -1.7484556025237907e-7);
const vec2 PI_2_FP64 = vec2(1.5707963705062866, -4.371139006309477e-8);
const vec2 PI_4_FP64 = vec2(0.7853981852531433, -2.1855695031547384e-8);
const vec2 PI_16_FP64 = vec2(0.19634954631328583, -5.463923757886846e-9);
const vec2 PI_16_2_FP64 = vec2(0.39269909262657166, -1.0927847515773692e-8);
const vec2 PI_16_3_FP64 = vec2(0.5890486240386963, -1.4906100798128818e-9);
const vec2 PI_180_FP64 = vec2(0.01745329238474369, 1.3519960498364902e-10);

const vec2 SIN_TABLE_0_FP64 = vec2(0.19509032368659973, -1.6704714833615242e-9);
const vec2 SIN_TABLE_1_FP64 = vec2(0.3826834261417389, 6.22335089017767e-9);
const vec2 SIN_TABLE_2_FP64 = vec2(0.5555702447891235, -1.1769521357507529e-8);
const vec2 SIN_TABLE_3_FP64 = vec2(0.7071067690849304, 1.2101617041793133e-8);

const vec2 COS_TABLE_0_FP64 = vec2(0.9807852506637573, 2.9739473106360492e-8);
const vec2 COS_TABLE_1_FP64 = vec2(0.9238795042037964, 2.8307490351764386e-8);
const vec2 COS_TABLE_2_FP64 = vec2(0.8314695954322815, 1.6870263741530778e-8);
const vec2 COS_TABLE_3_FP64 = vec2(0.7071067690849304, 1.2101617152815436e-8);

const vec2 INVERSE_FACTORIAL_3_FP64 = vec2(1.666666716337204e-01, -4.967053879312289e-09); // 1/3!
const vec2 INVERSE_FACTORIAL_4_FP64 = vec2(4.16666679084301e-02, -1.2417634698280722e-09); // 1/4!
const vec2 INVERSE_FACTORIAL_5_FP64 = vec2(8.333333767950535e-03, -4.34617203337595e-10); // 1/5!
const vec2 INVERSE_FACTORIAL_6_FP64 = vec2(1.3888889225199819e-03, -3.3631094437103215e-11); // 1/6!
const vec2 INVERSE_FACTORIAL_7_FP64 = vec2(1.9841270113829523e-04,  -2.725596874933456e-12); // 1/7!
const vec2 INVERSE_FACTORIAL_8_FP64 = vec2(2.4801587642286904e-05, -3.406996025904184e-13); // 1/8!
const vec2 INVERSE_FACTORIAL_9_FP64 = vec2(2.75573188446287533e-06, 3.7935713937038186e-14); // 1/9!
const vec2 INVERSE_FACTORIAL_10_FP64 = vec2(2.755731998149713e-07, -7.575112367869873e-15); // 1/10!

float nint(float d) {
    if (d == floor(d)) return d;
    return floor(d + 0.5);
}

vec2 nint_fp64(vec2 a) {
    float hi = nint(a.x);
    float lo;
    vec2 tmp;
    if (hi == a.x) {
        lo = nint(a.y);
        tmp = quickTwoSum(hi, lo);
    } else {
        lo = 0.0;
        if (abs(hi - a.x) == 0.5 && a.y < 0.0) {
            hi -= 1.0;
        }
        tmp = vec2(hi, lo);
    }
    return tmp;
}

/* k_power controls how much range reduction we would like to have
Range reduction uses the following method:
assume a = k_power * r + m * log(2), k and m being integers.
Set k_power = 4 (we can choose other k to trade accuracy with performance.
we only need to calculate exp(r) and using exp(a) = 2^m * exp(r)^k_power;
*/

vec2 exp_fp64(vec2 a) {
  // We need to make sure these two numbers match
  // as bit-wise shift is not available in GLSL 1.0
  const int k_power = 4;
  const float k = 16.0;

  const float inv_k = 1.0 / k;

  if (a.x <= -88.0) return vec2(0.0, 0.0);
  if (a.x >= 88.0) return vec2(1.0 / 0.0, 1.0 / 0.0);
  if (a.x == 0.0 && a.y == 0.0) return vec2(1.0, 0.0);
  if (a.x == 1.0 && a.y == 0.0) return E_FP64;

  float m = floor(a.x / LOG2_FP64.x + 0.5);
  vec2 r = sub_fp64(a, mul_fp64(LOG2_FP64, vec2(m, 0.0))) * inv_k;
  vec2 s, t, p;

  p = mul_fp64(r, r);
  s = sum_fp64(r, p * 0.5);
  p = mul_fp64(p, r);
  t = mul_fp64(p, INVERSE_FACTORIAL_3_FP64);

  s = sum_fp64(s, t);
  p = mul_fp64(p, r);
  t = mul_fp64(p, INVERSE_FACTORIAL_4_FP64);

  s = sum_fp64(s, t);
  p = mul_fp64(p, r);
  t = mul_fp64(p, INVERSE_FACTORIAL_5_FP64);

  // s = sum_fp64(s, t);
  // p = mul_fp64(p, r);
  // t = mul_fp64(p, INVERSE_FACTORIAL_6_FP64);

  // s = sum_fp64(s, t);
  // p = mul_fp64(p, r);
  // t = mul_fp64(p, INVERSE_FACTORIAL_7_FP64);

  s = sum_fp64(s, t);


  // At this point, s = exp(r) - 1; but after following 4 recursions, we will get exp(r) ^ 512 - 1.
  for (int i = 0; i < k_power; i++) {
    s = sum_fp64(s * 2.0, mul_fp64(s, s));
  }

#if defined(NVIDIA_FP64_WORKAROUND) || defined(INTEL_FP64_WORKAROUND)
  s = sum_fp64(s, vec2(ONE, 0.0));
#else
  s = sum_fp64(s, vec2(1.0, 0.0));
#endif

  return s * pow(2.0, m);
//   return r;
}

vec2 log_fp64(vec2 a)
{
  if (a.x == 1.0 && a.y == 0.0) return vec2(0.0, 0.0);
  if (a.x <= 0.0) return vec2(0.0 / 0.0, 0.0 / 0.0);
  vec2 x = vec2(log(a.x), 0.0);
  vec2 s;
#if defined(NVIDIA_FP64_WORKAROUND) || defined(INTEL_FP64_WORKAROUND)
  s = vec2(ONE, 0.0);
#else
  s = vec2(1.0, 0.0);
#endif

  x = sub_fp64(sum_fp64(x, mul_fp64(a, exp_fp64(-x))), s);
  return x;
}

vec2 sin_taylor_fp64(vec2 a) {
  vec2 r, s, t, x;

  if (a.x == 0.0 && a.y == 0.0) {
    return vec2(0.0, 0.0);
  }

  x = -mul_fp64(a, a);
  s = a;
  r = a;

  r = mul_fp64(r, x);
  t = mul_fp64(r, INVERSE_FACTORIAL_3_FP64);
  s = sum_fp64(s, t);

  r = mul_fp64(r, x);
  t = mul_fp64(r, INVERSE_FACTORIAL_5_FP64);
  s = sum_fp64(s, t);

  /* keep the following commented code in case we need them
  for extra accuracy from the Taylor expansion*/

  // r = mul_fp64(r, x);
  // t = mul_fp64(r, INVERSE_FACTORIAL_7_FP64);
  // s = sum_fp64(s, t);

  // r = mul_fp64(r, x);
  // t = mul_fp64(r, INVERSE_FACTORIAL_9_FP64);
  // s = sum_fp64(s, t);

  return s;
}

vec2 cos_taylor_fp64(vec2 a) {
  vec2 r, s, t, x;

  if (a.x == 0.0 && a.y == 0.0) {
    return vec2(1.0, 0.0);
  }

  x = -mul_fp64(a, a);
  r = x;
  s = sum_fp64(vec2(1.0, 0.0), r * 0.5);

  r = mul_fp64(r, x);
  t = mul_fp64(r, INVERSE_FACTORIAL_4_FP64);
  s = sum_fp64(s, t);

  r = mul_fp64(r, x);
  t = mul_fp64(r, INVERSE_FACTORIAL_6_FP64);
  s = sum_fp64(s, t);

  /* keep the following commented code in case we need them
  for extra accuracy from the Taylor expansion*/

  // r = mul_fp64(r, x);
  // t = mul_fp64(r, INVERSE_FACTORIAL_8_FP64);
  // s = sum_fp64(s, t);

  // r = mul_fp64(r, x);
  // t = mul_fp64(r, INVERSE_FACTORIAL_10_FP64);
  // s = sum_fp64(s, t);

  return s;
}

void sincos_taylor_fp64(vec2 a, out vec2 sin_t, out vec2 cos_t) {
  if (a.x == 0.0 && a.y == 0.0) {
    sin_t = vec2(0.0, 0.0);
    cos_t = vec2(1.0, 0.0);
  }

  sin_t = sin_taylor_fp64(a);
  cos_t = sqrt_fp64(sub_fp64(vec2(1.0, 0.0), mul_fp64(sin_t, sin_t)));
}

vec2 sin_fp64(vec2 a) {
    if (a.x == 0.0 && a.y == 0.0) {
        return vec2(0.0, 0.0);
    }

    // 2pi range reduction
    vec2 z = nint_fp64(div_fp64(a, TWO_PI_FP64));
    vec2 r = sub_fp64(a, mul_fp64(TWO_PI_FP64, z));

    vec2 t;
    float q = floor(r.x / PI_2_FP64.x + 0.5);
    int j = int(q);

    if (j < -2 || j > 2) {
        return vec2(0.0 / 0.0, 0.0 / 0.0);
    }

    t = sub_fp64(r, mul_fp64(PI_2_FP64, vec2(q, 0.0)));

    q = floor(t.x / PI_16_FP64.x + 0.5);
    int k = int(q);

    if (k == 0) {
        if (j == 0) {
            return sin_taylor_fp64(t);
        } else if (j == 1) {
            return cos_taylor_fp64(t);
        } else if (j == -1) {
            return -cos_taylor_fp64(t);
        } else {
            return -sin_taylor_fp64(t);
        }
    }

    int abs_k = int(abs(float(k)));

    if (abs_k > 4) {
        return vec2(0.0 / 0.0, 0.0 / 0.0);
    } else {
        t = sub_fp64(t, mul_fp64(PI_16_FP64, vec2(q, 0.0)));
    }

    vec2 u = vec2(0.0, 0.0);
    vec2 v = vec2(0.0, 0.0);

#if defined(NVIDIA_FP64_WORKAROUND) || defined(INTEL_FP64_WORKAROUND)
    if (abs(float(abs_k) - 1.0) < 0.5) {
        u = COS_TABLE_0_FP64;
        v = SIN_TABLE_0_FP64;
    } else if (abs(float(abs_k) - 2.0) < 0.5) {
        u = COS_TABLE_1_FP64;
        v = SIN_TABLE_1_FP64;
    } else if (abs(float(abs_k) - 3.0) < 0.5) {
        u = COS_TABLE_2_FP64;
        v = SIN_TABLE_2_FP64;
    } else if (abs(float(abs_k) - 4.0) < 0.5) {
        u = COS_TABLE_3_FP64;
        v = SIN_TABLE_3_FP64;
    }
#else
    if (abs_k == 1) {
        u = COS_TABLE_0_FP64;
        v = SIN_TABLE_0_FP64;
    } else if (abs_k == 2) {
        u = COS_TABLE_1_FP64;
        v = SIN_TABLE_1_FP64;
    } else if (abs_k == 3) {
        u = COS_TABLE_2_FP64;
        v = SIN_TABLE_2_FP64;
    } else if (abs_k == 4) {
        u = COS_TABLE_3_FP64;
        v = SIN_TABLE_3_FP64;
    }
#endif

    vec2 sin_t, cos_t;
    sincos_taylor_fp64(t, sin_t, cos_t);



    vec2 result = vec2(0.0, 0.0);
    if (j == 0) {
        if (k > 0) {
            result = sum_fp64(mul_fp64(u, sin_t), mul_fp64(v, cos_t));
        } else {
            result = sub_fp64(mul_fp64(u, sin_t), mul_fp64(v, cos_t));
        }
    } else if (j == 1) {
        if (k > 0) {
            result = sub_fp64(mul_fp64(u, cos_t), mul_fp64(v, sin_t));
        } else {
            result = sum_fp64(mul_fp64(u, cos_t), mul_fp64(v, sin_t));
        }
    } else if (j == -1) {
        if (k > 0) {
            result = sub_fp64(mul_fp64(v, sin_t), mul_fp64(u, cos_t));
        } else {
            result = -sum_fp64(mul_fp64(v, sin_t), mul_fp64(u, cos_t));
        }
    } else {
        if (k > 0) {
            result = -sum_fp64(mul_fp64(u, sin_t), mul_fp64(v, cos_t));
        } else {
            result = sub_fp64(mul_fp64(v, cos_t), mul_fp64(u, sin_t));
        }
    }

    return result;
}

vec2 cos_fp64(vec2 a) {
    if (a.x == 0.0 && a.y == 0.0) {
        return vec2(1.0, 0.0);
    }

    // 2pi range reduction
    vec2 z = nint_fp64(div_fp64(a, TWO_PI_FP64));
    vec2 r = sub_fp64(a, mul_fp64(TWO_PI_FP64, z));

    vec2 t;
    float q = floor(r.x / PI_2_FP64.x + 0.5);
    int j = int(q);

    if (j < -2 || j > 2) {
        return vec2(0.0 / 0.0, 0.0 / 0.0);
    }

    t = sub_fp64(r, mul_fp64(PI_2_FP64, vec2(q, 0.0)));

    q = floor(t.x / PI_16_FP64.x + 0.5);
    int k = int(q);

    if (k == 0) {
        if (j == 0) {
            return cos_taylor_fp64(t);
        } else if (j == 1) {
            return -sin_taylor_fp64(t);
        } else if (j == -1) {
            return sin_taylor_fp64(t);
        } else {
            return -cos_taylor_fp64(t);
        }
    }

    int abs_k = int(abs(float(k)));

    if (abs_k > 4) {
        return vec2(0.0 / 0.0, 0.0 / 0.0);
    } else {
        t = sub_fp64(t, mul_fp64(PI_16_FP64, vec2(q, 0.0)));
    }

    vec2 u = vec2(0.0, 0.0);
    vec2 v = vec2(0.0, 0.0);

#if defined(NVIDIA_FP64_WORKAROUND) || defined(INTEL_FP64_WORKAROUND)
    if (abs(float(abs_k) - 1.0) < 0.5) {
        u = COS_TABLE_0_FP64;
        v = SIN_TABLE_0_FP64;
    } else if (abs(float(abs_k) - 2.0) < 0.5) {
        u = COS_TABLE_1_FP64;
        v = SIN_TABLE_1_FP64;
    } else if (abs(float(abs_k) - 3.0) < 0.5) {
        u = COS_TABLE_2_FP64;
        v = SIN_TABLE_2_FP64;
    } else if (abs(float(abs_k) - 4.0) < 0.5) {
        u = COS_TABLE_3_FP64;
        v = SIN_TABLE_3_FP64;
    }
#else
    if (abs_k == 1) {
        u = COS_TABLE_0_FP64;
        v = SIN_TABLE_0_FP64;
    } else if (abs_k == 2) {
        u = COS_TABLE_1_FP64;
        v = SIN_TABLE_1_FP64;
    } else if (abs_k == 3) {
        u = COS_TABLE_2_FP64;
        v = SIN_TABLE_2_FP64;
    } else if (abs_k == 4) {
        u = COS_TABLE_3_FP64;
        v = SIN_TABLE_3_FP64;
    }
#endif

    vec2 sin_t, cos_t;
    sincos_taylor_fp64(t, sin_t, cos_t);

    vec2 result = vec2(0.0, 0.0);
    if (j == 0) {
        if (k > 0) {
            result = sub_fp64(mul_fp64(u, cos_t), mul_fp64(v, sin_t));
        } else {
            result = sum_fp64(mul_fp64(u, cos_t), mul_fp64(v, sin_t));
        }
    } else if (j == 1) {
        if (k > 0) {
            result = -sum_fp64(mul_fp64(u, sin_t), mul_fp64(v, cos_t));
        } else {
            result = sub_fp64(mul_fp64(v, cos_t), mul_fp64(u, sin_t));
        }
    } else if (j == -1) {
        if (k > 0) {
            result = sum_fp64(mul_fp64(u, sin_t), mul_fp64(v, cos_t));
        } else {
            result = sub_fp64(mul_fp64(u, sin_t), mul_fp64(v, cos_t));
        }
    } else {
        if (k > 0) {
            result = sub_fp64(mul_fp64(v, sin_t), mul_fp64(u, cos_t));
        } else {
            result = -sum_fp64(mul_fp64(u, cos_t), mul_fp64(v, sin_t));
        }
    }

    return result;
}

vec2 tan_fp64(vec2 a) {
    vec2 sin_a;
    vec2 cos_a;

    if (a.x == 0.0 && a.y == 0.0) {
        return vec2(0.0, 0.0);
    }

    // 2pi range reduction
    vec2 z = nint_fp64(div_fp64(a, TWO_PI_FP64));
    vec2 r = sub_fp64(a, mul_fp64(TWO_PI_FP64, z));

    vec2 t;
    float q = floor(r.x / PI_2_FP64.x + 0.5);
    int j = int(q);


    if (j < -2 || j > 2) {
        return vec2(0.0 / 0.0, 0.0 / 0.0);
    }

    t = sub_fp64(r, mul_fp64(PI_2_FP64, vec2(q, 0.0)));

    q = floor(t.x / PI_16_FP64.x + 0.5);
    int k = int(q);
    int abs_k = int(abs(float(k)));

    // We just can't get PI/16 * 3.0 very accurately.
    // so let's just store it
    if (abs_k > 4) {
        return vec2(0.0 / 0.0, 0.0 / 0.0);
    } else {
        t = sub_fp64(t, mul_fp64(PI_16_FP64, vec2(q, 0.0)));
    }


    vec2 u = vec2(0.0, 0.0);
    vec2 v = vec2(0.0, 0.0);

    vec2 sin_t, cos_t;
    vec2 s, c;
    sincos_taylor_fp64(t, sin_t, cos_t);

    if (k == 0) {
        s = sin_t;
        c = cos_t;
    } else {
#if defined(NVIDIA_FP64_WORKAROUND) || defined(INTEL_FP64_WORKAROUND)
        if (abs(float(abs_k) - 1.0) < 0.5) {
            u = COS_TABLE_0_FP64;
            v = SIN_TABLE_0_FP64;
        } else if (abs(float(abs_k) - 2.0) < 0.5) {
            u = COS_TABLE_1_FP64;
            v = SIN_TABLE_1_FP64;
        } else if (abs(float(abs_k) - 3.0) < 0.5) {
            u = COS_TABLE_2_FP64;
            v = SIN_TABLE_2_FP64;
        } else if (abs(float(abs_k) - 4.0) < 0.5) {
            u = COS_TABLE_3_FP64;
            v = SIN_TABLE_3_FP64;
        }
#else
        if (abs_k == 1) {
            u = COS_TABLE_0_FP64;
            v = SIN_TABLE_0_FP64;
        } else if (abs_k == 2) {
            u = COS_TABLE_1_FP64;
            v = SIN_TABLE_1_FP64;
        } else if (abs_k == 3) {
            u = COS_TABLE_2_FP64;
            v = SIN_TABLE_2_FP64;
        } else if (abs_k == 4) {
            u = COS_TABLE_3_FP64;
            v = SIN_TABLE_3_FP64;
        }
#endif
        if (k > 0) {
            s = sum_fp64(mul_fp64(u, sin_t), mul_fp64(v, cos_t));
            c = sub_fp64(mul_fp64(u, cos_t), mul_fp64(v, sin_t));
        } else {
            s = sub_fp64(mul_fp64(u, sin_t), mul_fp64(v, cos_t));
            c = sum_fp64(mul_fp64(u, cos_t), mul_fp64(v, sin_t));
        }
    }

    if (j == 0) {
        sin_a = s;
        cos_a = c;
    } else if (j == 1) {
        sin_a = c;
        cos_a = -s;
    } else if (j == -1) {
        sin_a = -c;
        cos_a = s;
    } else {
        sin_a = -s;
        cos_a = -c;
    }
    return div_fp64(sin_a, cos_a);
}

vec2 radians_fp64(vec2 degree) {
  return mul_fp64(degree, PI_180_FP64);
}

vec2 mix_fp64(vec2 a, vec2 b, float x) {
  vec2 range = sub_fp64(b, a);
  return sum_fp64(a, mul_fp64(range, vec2(x, 0.0)));
}

// Vector functions
// vec2 functions
void vec2_sum_fp64(vec2 a[2], vec2 b[2], out vec2 out_val[2]) {
    out_val[0] = sum_fp64(a[0], b[0]);
    out_val[1] = sum_fp64(a[1], b[1]);
}

void vec2_sub_fp64(vec2 a[2], vec2 b[2], out vec2 out_val[2]) {
    out_val[0] = sub_fp64(a[0], b[0]);
    out_val[1] = sub_fp64(a[1], b[1]);
}

void vec2_mul_fp64(vec2 a[2], vec2 b[2], out vec2 out_val[2]) {
    out_val[0] = mul_fp64(a[0], b[0]);
    out_val[1] = mul_fp64(a[1], b[1]);
}

void vec2_div_fp64(vec2 a[2], vec2 b[2], out vec2 out_val[2]) {
    out_val[0] = div_fp64(a[0], b[0]);
    out_val[1] = div_fp64(a[1], b[1]);
}

void vec2_mix_fp64(vec2 x[2], vec2 y[2], float a, out vec2 out_val[2]) {
  vec2 range[2];
  vec2_sub_fp64(y, x, range);
  vec2 portion[2];
  portion[0] = range[0] * a;
  portion[1] = range[1] * a;
  vec2_sum_fp64(x, portion, out_val);
}

vec2 vec2_length_fp64(vec2 x[2]) {
  return sqrt_fp64(sum_fp64(mul_fp64(x[0], x[0]), mul_fp64(x[1], x[1])));
}

void vec2_normalize_fp64(vec2 x[2], out vec2 out_val[2]) {
  vec2 length = vec2_length_fp64(x);
  vec2 length_vec2[2];
  length_vec2[0] = length;
  length_vec2[1] = length;

  vec2_div_fp64(x, length_vec2, out_val);
}

vec2 vec2_distance_fp64(vec2 x[2], vec2 y[2]) {
  vec2 diff[2];
  vec2_sub_fp64(x, y, diff);
  return vec2_length_fp64(diff);
}

vec2 vec2_dot_fp64(vec2 a[2], vec2 b[2]) {
  vec2 v[2];

  v[0] = mul_fp64(a[0], b[0]);
  v[1] = mul_fp64(a[1], b[1]);

  return sum_fp64(v[0], v[1]);
}

// vec3 functions
void vec3_sub_fp64(vec2 a[3], vec2 b[3], out vec2 out_val[3]) {
  for (int i = 0; i < 3; i++) {
    out_val[i] = sum_fp64(a[i], b[i]);
  }
}

void vec3_sum_fp64(vec2 a[3], vec2 b[3], out vec2 out_val[3]) {
  for (int i = 0; i < 3; i++) {
    out_val[i] = sum_fp64(a[i], b[i]);
  }
}

vec2 vec3_length_fp64(vec2 x[3]) {
  return sqrt_fp64(sum_fp64(sum_fp64(mul_fp64(x[0], x[0]), mul_fp64(x[1], x[1])),
    mul_fp64(x[2], x[2])));
}

vec2 vec3_distance_fp64(vec2 x[3], vec2 y[3]) {
  vec2 diff[3];
  vec3_sub_fp64(x, y, diff);
  return vec3_length_fp64(diff);
}

// vec4 functions
void vec4_fp64(vec4 a, out vec2 out_val[4]) {
  out_val[0].x = a[0];
  out_val[0].y = 0.0;

  out_val[1].x = a[1];
  out_val[1].y = 0.0;

  out_val[2].x = a[2];
  out_val[2].y = 0.0;

  out_val[3].x = a[3];
  out_val[3].y = 0.0;
}

void vec4_scalar_mul_fp64(vec2 a[4], vec2 b, out vec2 out_val[4]) {
  out_val[0] = mul_fp64(a[0], b);
  out_val[1] = mul_fp64(a[1], b);
  out_val[2] = mul_fp64(a[2], b);
  out_val[3] = mul_fp64(a[3], b);
}

void vec4_sum_fp64(vec2 a[4], vec2 b[4], out vec2 out_val[4]) {
  for (int i = 0; i < 4; i++) {
    out_val[i] = sum_fp64(a[i], b[i]);
  }
}

void vec4_dot_fp64(vec2 a[4], vec2 b[4], out vec2 out_val) {
  vec2 v[4];

  v[0] = mul_fp64(a[0], b[0]);
  v[1] = mul_fp64(a[1], b[1]);
  v[2] = mul_fp64(a[2], b[2]);
  v[3] = mul_fp64(a[3], b[3]);

  out_val = sum_fp64(sum_fp64(v[0], v[1]), sum_fp64(v[2], v[3]));
}

void mat4_vec4_mul_fp64(vec2 b[16], vec2 a[4], out vec2 out_val[4]) {
  vec2 tmp[4];

  for (int i = 0; i < 4; i++)
  {
    for (int j = 0; j < 4; j++)
    {
      tmp[j] = b[j + i * 4];
    }
    vec4_dot_fp64(a, tmp, out_val[i]);
  }
}
// END MODULE_fp64

attribute vec2 a;
attribute vec2 b;
invariant varying vec2 result;
void main(void) {
  result = sum_fp64(a, b);
}

Warning

Since posting this comment, I'm trying again without forcing the Metal backend, and it does seem like use of invariant has improved things. Will post another update once I've narrowed that down further.

@donmccurdy
Copy link
Collaborator

Updates in #1882. We can fix the issue with the invariant specifier on Apple M1/M2 in Chrome, when ANGLE's OpenGL backend is enabled. For unknown reasons, the specifier doesn't seem to help when ANGLE's Metal backend is enabled. The default is currently up to the browser. No effect in Safari, which still fails.

@donmccurdy
Copy link
Collaborator

I've added a small, reproducible example to the Webkit bug, without a dependency on lumagl:

@ibgreen ibgreen mentioned this issue Feb 19, 2024
26 tasks
@Swoorup
Copy link
Author

Swoorup commented Mar 5, 2024

I wonder if the issue exists because it is disabled on anything not Mac 11 (Angle Metal)? I haven't got time to test compiling with it turned on though.

https://github.com/google/angle/blob/5678ad09aa3b72c5b7c7b05c49c6c8b3ed443487/src/libANGLE/renderer/metal/mtl_utils.mm#L891-L897

@ibgreen ibgreen mentioned this issue Sep 20, 2024
44 tasks
@ibgreen ibgreen added this to the v9.2 milestone Sep 20, 2024
Sign up for free to join this conversation on GitHub. Already have an account? Sign in to comment
Labels
Projects
None yet
Development

No branches or pull requests

3 participants