-
Notifications
You must be signed in to change notification settings - Fork 5
/
Copy pathbackbone.py
executable file
·359 lines (284 loc) · 12 KB
/
backbone.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
# This code is modified from https://github.com/facebookresearch/low-shot-shrink-hallucinate
# The ResNet code is modified from https://github.com/plai-group/simple-cnaps
import torch
from torch.autograd import Variable
import torch.nn as nn
import math
import numpy as np
import torch.nn.functional as F
from einops import rearrange, repeat
from torch.nn.utils.weight_norm import WeightNorm
import pdb
from torchvision import models
import os
device = torch.device('cuda:0' if torch.cuda.is_available() else 'cpu')
# Basic ResNet model
pretrained_path = "./checkpoint_models/Pretrained_ResNet_FETI.pt.tar"
def pretrain_load(pretrained_path):
pretrained_dict = torch.load(pretrained_path)
pretrained_dict['state_dict'] = {key.replace(
"module.resnet.", ""): value for key, value in pretrained_dict['state_dict'].items()}
return pretrained_dict
def init_layer(L):
# Initialization using fan-in
if isinstance(L, nn.Conv2d):
n = L.kernel_size[0]*L.kernel_size[1]*L.out_channels
L.weight.data.normal_(0,math.sqrt(2.0/float(n)))
elif isinstance(L, nn.BatchNorm2d):
L.weight.data.fill_(1)
L.bias.data.fill_(0)
def conv3x3(in_planes, out_planes, stride=1):
"""3x3 convolution with padding"""
return nn.Conv2d(in_planes, out_planes, kernel_size=3, stride=stride,
padding=1, bias=False)
def conv1x1(in_planes, out_planes, stride=1):
"""1x1 convolution"""
return nn.Conv2d(in_planes, out_planes, kernel_size=1, stride=stride, bias=False)
class BasicBlock(nn.Module):
expansion = 1
def __init__(self, inplanes, planes, stride=1, downsample=None):
super(BasicBlock, self).__init__()
self.conv1 = conv3x3(inplanes, planes, stride)
self.bn1 = nn.BatchNorm2d(planes)
self.relu = nn.ReLU(inplace=True)
self.conv2 = conv3x3(planes, planes)
self.bn2 = nn.BatchNorm2d(planes)
self.downsample = downsample
self.stride = stride
def forward(self, x):
identity = x
out = self.conv1(x)
out = self.bn1(out)
out = self.relu(out)
out = self.conv2(out)
out = self.bn2(out)
if self.downsample is not None:
identity = self.downsample(x)
out += identity
out = self.relu(out)
return out
class CosineDistLinear(nn.Module):
def __init__(self, indim, outdim):
super(CosineDistLinear, self).__init__()
self.L = nn.Linear( indim, outdim, bias = False)
self.class_wise_learnable_norm = True #See the issue#4&8 in the github
if self.class_wise_learnable_norm:
WeightNorm.apply(self.L, 'weight', dim=0) #split the weight update component to direction and norm
if outdim <=200:
self.scale_factor = 2; #a fixed scale factor to scale the output of cos value into a reasonably large input for softmax, for to reproduce the result of CUB with ResNet10, use 4. see the issue#31 in the github
else:
self.scale_factor = 10; #in Omniglot, a larger scale factor is required to handle >1000 output classes.
def forward(self, x):
x_norm = torch.norm(x, p=2, dim =1).unsqueeze(1).expand_as(x)
x_normalized = x.div(x_norm+ 0.00001)
if not self.class_wise_learnable_norm:
L_norm = torch.norm(self.L.weight.data, p=2, dim =1).unsqueeze(1).expand_as(self.L.weight.data)
self.L.weight.data = self.L.weight.data.div(L_norm + 0.00001)
cos_dist = self.L(x_normalized) #matrix product by forward function, but when using WeightNorm, this also multiply the cosine distance by a class-wise learnable norm, see the issue#4&8 in the github
scores = self.scale_factor* (cos_dist)
return scores
class Flatten(nn.Module):
def __init__(self):
super(Flatten, self).__init__()
def forward(self, x):
return x.view(x.size(0), -1)
# Simple Conv Block
class ConvBlock(nn.Module):
def __init__(self, indim, outdim, pool=True, padding=1):
super(ConvBlock, self).__init__()
self.indim = indim
self.outdim = outdim
self.C = nn.Conv2d(indim, outdim, 3, padding=padding)
self.BN = nn.BatchNorm2d(outdim)
self.relu = nn.ReLU(inplace=True)
self.parametrized_layers = [self.C, self.BN, self.relu]
if pool:
self.pool = nn.MaxPool2d(2)
self.parametrized_layers.append(self.pool)
for layer in self.parametrized_layers:
init_layer(layer)
self.trunk = nn.Sequential(*self.parametrized_layers)
def forward(self, x):
out = self.trunk(x)
return out
class ConvNet(nn.Module):
def __init__(self, depth, dataset, flatten=True):
super(ConvNet, self).__init__()
trunk = []
for i in range(depth):
indim = 3 if i == 0 else 64
outdim = 64
# only pooling for fist 4 layers
B = ConvBlock(indim, outdim, pool=i < 4)
trunk.append(B)
if flatten:
trunk.append(Flatten())
self.trunk = nn.Sequential(*trunk)
dim = 4 if dataset =='CIFAR' else 5
self.final_feat_dim = 64 * dim * dim if flatten else [64, dim, dim]
def forward(self, x):
out = self.trunk(x)
return out
class ConvNetNopool(nn.Module): #Relation net use a 4 layer conv with pooling in only first two layers, else no pooling
def __init__(self, depth, flatten=True):
super(ConvNetNopool,self).__init__()
trunk = []
for i in range(depth):
indim = 3 if i == 0 else 64
outdim = 64
B = ConvBlock(indim, outdim, pool = ( i in [0,1] ), padding = 0 if i in[0,1] else 1 ) #only first two layer has pooling and no padding
trunk.append(B)
if flatten:
trunk.append(Flatten())
self.trunk = nn.Sequential(*trunk)
if flatten:
self.final_feat_dim = 64 * 19 * 19
else:
self.final_feat_dim = [64, 19, 19]
def forward(self,x):
out = self.trunk(x)
return out
class ConvNetS(nn.Module): #For Omniglot, only 1 input channel, output dim is 64
def __init__(self, depth, flatten = True):
super(ConvNetS,self).__init__()
trunk = []
for i in range(depth):
indim = 1 if i == 0 else 64
outdim = 64
B = ConvBlock(indim, outdim, pool = ( i <4 ) ) #only pooling for fist 4 layers
trunk.append(B)
if flatten:
trunk.append(Flatten())
self.trunk = nn.Sequential(*trunk)
self.final_feat_dim = 64
def forward(self,x):
out = x[:,0:1,:,:] #only use the first dimension
out = self.trunk(out)
return out
class ConvNetSNopool(nn.Module): #Relation net use a 4 layer conv with pooling in only first two layers, else no pooling. For Omniglot, only 1 input channel, output dim is [64,5,5]
def __init__(self, depth, flatten=False):
super(ConvNetSNopool,self).__init__()
trunk = []
for i in range(depth):
indim = 1 if i == 0 else 64
outdim = 64
B = ConvBlock(indim, outdim, pool = ( i in [0,1] ), padding = 0 if i in[0,1] else 1 ) #only first two layer has pooling and no padding
trunk.append(B)
if (flatten):
trunk.append(Flatten())
self.trunk = nn.Sequential(*trunk)
if (flatten):
self.final_feat_dim = 64 * 19 * 19
else:
self.final_feat_dim = [64, 19, 19]
def forward(self,x):
out = x[:,0:1,:,:] #only use the first dimension
out = self.trunk(out)
return out
class ResNetModel():
def __init__(self, dataset, variant = 34, flatten = False):
super(ResNetModel, self).__init__()
trunk = []
dim = 4 if dataset == 'CIFAR' else 7
self.final_feat_dim = 512 * dim * dim if flatten else [512, dim, dim]
if variant ==18:
resnet = models.resnet18(pretrained = True).to(device) #pretrained on full ImageNet
elif variant == 34:
resnet = models.resnet34(pretrained = True).to(device)
self.model = nn.Sequential(*[*resnet.children()][:-2])
def forward(self,x):
out = self.model(x)
return out
class ResNet(nn.Module):
def __init__(self, block, layers, flatten = False):
super(ResNet, self).__init__()
dim = 7
self.final_feat_dim = 512 * dim * dim if flatten else [512, dim, dim]
self.initial_pool = False
inplanes = self.inplanes = 64
self.conv1 = nn.Conv2d(3, self.inplanes, kernel_size=5, stride=2, padding=1,
bias=False)
self.bn1 = nn.BatchNorm2d(self.inplanes)
self.relu = nn.ReLU(inplace=True)
self.maxpool = nn.MaxPool2d(kernel_size=3, stride=2, padding=1)
self.layer1 = self._make_layer(block, inplanes, layers[0])
self.layer2 = self._make_layer(
block, inplanes * 2, layers[1], stride=2)
self.layer3 = self._make_layer(
block, inplanes * 4, layers[2], stride=2)
self.layer4 = self._make_layer(
block, inplanes * 8, layers[3], stride=2)
self.avgpool = nn.AdaptiveAvgPool2d(7)
for m in self.modules():
if isinstance(m, nn.Conv2d):
nn.init.kaiming_normal_(
m.weight, mode='fan_out', nonlinearity='relu')
elif isinstance(m, nn.BatchNorm2d):
nn.init.constant_(m.weight, 1)
nn.init.constant_(m.bias, 0)
def _make_layer(self, block, planes, blocks, stride=1):
downsample = None
if stride != 1 or self.inplanes != planes * block.expansion:
downsample = nn.Sequential(
conv1x1(self.inplanes, planes * block.expansion, stride),
nn.BatchNorm2d(planes * block.expansion),
)
layers = []
layers.append(block(self.inplanes, planes, stride, downsample))
self.inplanes = planes * block.expansion
for _ in range(1, blocks):
layers.append(block(self.inplanes, planes))
return nn.Sequential(*layers)
def forward(self, x, param_dict=None):
x = self.conv1(x)
x = self.bn1(x)
x = self.relu(x)
if self.initial_pool:
x = self.maxpool(x)
x = self.layer1(x)
x = self.layer2(x)
x = self.layer3(x)
x = self.layer4(x)
x = self.avgpool(x)
return x
def Conv4(dataset, flatten=True):
return ConvNet(4, dataset, flatten)
def Conv6(dataset, flatten=True):
return ConvNet(6, dataset, flatten)
def Conv4NP(dataset, flatten=True):
return ConvNetNopool(4, flatten)
def Conv6NP(dataset, flatten=True):
return ConvNetNopool(6, flatten)
def Conv4S(dataset, flatten=True):
return ConvNetS(4, flatten)
def Conv6S(dataset, flatten=True):
return ConvNetS(6, flatten)
def Conv4SNP(dataset, flatten=True):
return ConvNetSNopool(4, flatten)
def Conv6SNP(dataset, flatten=True):
return ConvNetSNopool(6, flatten)
def ResNet12(FETI, dataset, flatten=True):
if FETI:
model = ResNet(BasicBlock, [2, 1, 1, 1], flatten)
pretrained_dict = pretrain_load(pretrained_path)
model.load_state_dict(pretrained_dict['state_dict'], strict=False)
else:
print("Torchvision.model does not support ResNet12. Change to ResNet18 instead.")
model = ResNetModel(dataset, 18, flatten)
return model
def ResNet18(FETI, dataset, flatten=True):
if FETI:
model = ResNet(BasicBlock, [2, 2, 2, 2], flatten)
pretrained_dict = pretrain_load(pretrained_path)
model.load_state_dict(pretrained_dict['state_dict'], strict=False)
else:
model = ResNetModel(dataset, 18, flatten)
return model
def ResNet34(FETI, dataset, flatten=True):
if FETI:
model = ResNet(BasicBlock, [3, 4, 6, 3], flatten)
pretrained_dict = pretrain_load(pretrained_path)
model.load_state_dict(pretrained_dict['state_dict'], strict=False)
else:
model = ResNetModel(dataset, 34, flatten)
return model