-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathmain.out
43 lines (43 loc) · 3.42 KB
/
main.out
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
\BOOKMARK [0][-]{chapter*.7}{Lista de Abreviaturas}{}% 1
\BOOKMARK [0][-]{chapter.1}{Introdu\347\343o}{}% 2
\BOOKMARK [1][-]{section.1.1}{Objetivo}{chapter.1}% 3
\BOOKMARK [1][-]{section.1.2}{Estrutura do Trabalho}{chapter.1}% 4
\BOOKMARK [0][-]{chapter.2}{Fundamenta\347\343o Te\363rica}{}% 5
\BOOKMARK [1][-]{section.2.1}{Intensifica\347\343o e Diversifica\347\343o}{chapter.2}% 6
\BOOKMARK [1][-]{section.2.2}{Algoritmos Evolutivos}{chapter.2}% 7
\BOOKMARK [2][-]{subsection.2.2.1}{Algoritmo Gen\351tico}{section.2.2}% 8
\BOOKMARK [2][-]{subsection.2.2.2}{Evolu\347\343o Diferencial}{section.2.2}% 9
\BOOKMARK [1][-]{section.2.3}{Algoritmos de Intelig\352ncia de Enxame}{chapter.2}% 10
\BOOKMARK [2][-]{subsection.2.3.1}{Otimiza\347\343o por Col\364nia de Bact\351rias}{section.2.3}% 11
\BOOKMARK [2][-]{subsection.2.3.2}{Otimiza\347\343o por Col\364nia de Vaga-Lumes}{section.2.3}% 12
\BOOKMARK [2][-]{subsection.2.3.3}{Otimiza\347\343o por Col\364nia de Morcegos}{section.2.3}% 13
\BOOKMARK [2][-]{subsection.2.3.4}{Otimiza\347\343o por Enxame de Part\355culas}{section.2.3}% 14
\BOOKMARK [2][-]{subsection.2.3.5}{Otimiza\347\343o por Enxame de Part\355culas em Cl\343s}{section.2.3}% 15
\BOOKMARK [1][-]{section.2.4}{Diversidade Populacional}{chapter.2}% 16
\BOOKMARK [2][-]{subsection.2.4.1}{Manuten\347\343o}{section.2.4}% 17
\BOOKMARK [2][-]{subsection.2.4.2}{M\351tricas}{section.2.4}% 18
\BOOKMARK [1][-]{section.2.5}{Aplica\347\343o do AG em ambientes din\342micos}{chapter.2}% 19
\BOOKMARK [1][-]{section.2.6}{Problemas Din\342micos com Dom\355nio Cont\355nuo}{chapter.2}% 20
\BOOKMARK [1][-]{section.2.7}{Fun\347\365es Benchmark}{chapter.2}% 21
\BOOKMARK [2][-]{subsection.2.7.1}{Avalia\347\343o de Desempenho}{section.2.7}% 22
\BOOKMARK [1][-]{section.2.8}{Inst\342ncias de Problemas}{chapter.2}% 23
\BOOKMARK [2][-]{subsection.2.8.1}{Moving Peaks - MP}{section.2.8}% 24
\BOOKMARK [2][-]{subsection.2.8.2}{Ocillating Peaks - OP}{section.2.8}% 25
\BOOKMARK [2][-]{subsection.2.8.3}{Gerador de Problemas de teste para Ambientes n\343o Estacion\341rios}{section.2.8}% 26
\BOOKMARK [0][-]{chapter.3}{Trabalhos Relacionados}{}% 27
\BOOKMARK [1][-]{section.3.1}{Evolu\347\343o Diferencial Local a Base de Aglomera\347\343o e com Mem\363ria Baseada em Esp\351cies}{chapter.3}% 28
\BOOKMARK [1][-]{section.3.2}{Algoritmo de Vaga-Lumes baseado em multi-enxames - MSFA}{chapter.3}% 29
\BOOKMARK [1][-]{section.3.3}{Algoritmo PSO em Ambientes Din\342micos}{chapter.3}% 30
\BOOKMARK [2][-]{subsection.3.3.1}{Dynamic Species-Based Particle Swarm Optimizer - DSPSO}{section.3.3}% 31
\BOOKMARK [2][-]{subsection.3.3.2}{Clustering Particle Swarm Optimizer - ClPSO}{section.3.3}% 32
\BOOKMARK [2][-]{subsection.3.3.3}{Volitive Particle Swarm Optimizer - VPSO}{section.3.3}% 33
\BOOKMARK [1][-]{section.3.4}{Otimiza\347\343o por Col\364nia de Bact\351rias em Problemas Din\342micos}{chapter.3}% 34
\BOOKMARK [1][-]{section.3.5}{Considera\347\365es}{chapter.3}% 35
\BOOKMARK [0][-]{chapter.4}{Modelo}{}% 36
\BOOKMARK [1][-]{section.4.1}{Caracter\355sticas do algoritmo}{chapter.4}% 37
\BOOKMARK [2][-]{subsection.4.1.1}{Fun\347\343o de Aglomeramento \(crowding\)}{section.4.1}% 38
\BOOKMARK [1][-]{section.4.2}{Ilustra\347\343o Conceitual}{chapter.4}% 39
\BOOKMARK [0][-]{chapter.5}{Protocolo de Experimenta\347\343o}{}% 40
\BOOKMARK [0][-]{chapter.6}{Resultados e An\341lises}{}% 41
\BOOKMARK [0][-]{chapter.7}{Conclus\343o e Trabalhos Futuros}{}% 42
\BOOKMARK [0][-]{chapter*.10}{Bibliografia}{}% 43