-
Notifications
You must be signed in to change notification settings - Fork 16
/
Copy pathvisualize_pet.m
658 lines (605 loc) · 22.5 KB
/
visualize_pet.m
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
%% Visualization for the PET reconstructions
% Each section has a visualization code for a different purpose
% Only a specific section should be run at a time
% This visualization file is no longer maintained. It is recommended to
% use volume3Dviewer instead. See help volume3Dviewer
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
% Copyright (C) 2020 Ville-Veikko Wettenhovi
%
% This program is free software: you can redistribute it and/or modify
% it under the terms of the GNU General Public License as published by
% the Free Software Foundation, either version 3 of the License, or
% (at your option) any later version.
%
% This program is distributed in the hope that it will be useful,
% but WITHOUT ANY WARRANTY; without even the implied warranty of
% MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
% GNU General Public License for more details.
%
% You should have received a copy of the GNU General Public License
% along with this program. If not, see <https://www.gnu.org/licenses/>.
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
% Load the saved reconstruction and machine specific variables
if exist('pz','var')
image_properties = pz{end,1};
end
%% Visualize several reconstructions for one time step for all slices, last iterations
algo_char = algorithms_char();
% The below list can be generated (without line endings) with: algorithms_char(0)
% 1 = MLEM, 2 = OSEM, 3 = MRAMLA, 4 = RAMLA, 5 = ROSEM, 6 = RBI, 7 = DRAMA,
% 8 = COSEM, 9 = ECOSEM, 10 = ACOSEM, 11 = Median Root (OSL-MLEM),
% 12 = Median Root (OSL-OSEM), 13 = Median Root (BSREM), 14 = Median Root (MBSREM),
% 15 = Median Root (ROSEM-MAP), 16 = Median Root (OSL-RBI), 17 = Median Root (OSL-COSEM),
% 18 = Median Root (PKMA), 19 = Quadratic (OSL-MLEM), 20 = Quadratic (OSL-OSEM),
% 21 = Quadratic (BSREM), 22 = Quadratic (MBSREM), 23 = Quadratic (ROSEM-MAP),
% 24 = Quadratic (OSL-RBI), 25 = Quadratic (OSL-COSEM), 26 = Quadratic (PKMA),
% 27 = Huber (OSL-MLEM), 28 = Huber (OSL-OSEM), 29 = Huber (BSREM), 30 = Huber (MBSREM),
% 31 = Huber (ROSEM-MAP), 32 = Huber (OSL-RBI), 33 = Huber (OSL-COSEM),
% 34 = Huber (PKMA), 35 = L-filter (OSL-MLEM), 36 = L-filter (OSL-OSEM),
% 37 = L-filter (BSREM), 38 = L-filter (MBSREM), 39 = L-filter (ROSEM-MAP),
% 40 = L-filter (OSL-RBI), 41 = L-filter (OSL-COSEM), 42 = L-filter (PKMA),
% 43 = FIR Median Hybrid (OSL-MLEM), 44 = FIR Median Hybrid (OSL-OSEM),
% 45 = FIR Median Hybrid (BSREM), 46 = FIR Median Hybrid (MBSREM),
% 47 = FIR Median Hybrid (ROSEM-MAP), 48 = FIR Median Hybrid (OSL-RBI),
% 49 = FIR Median Hybrid (OSL-COSEM), 50 = FIR Median Hybrid (PKMA),
% 51 = Weighted mean (OSL-MLEM), 52 = Weighted mean (OSL-OSEM), 53 = Weighted mean (BSREM),
% 54 = Weighted mean (MBSREM), 55 = Weighted mean (ROSEM-MAP), 56 = Weighted mean (OSL-RBI),
% 57 = Weighted mean (OSL-COSEM), 58 = Weighted mean (PKMA),
% 59 = Total Variation (OSL-MLEM), 60 = Total Variation (OSL-OSEM),
% 61 = Total Variation (BSREM), 62 = Total Variation (MBSREM),
% 63 = Total Variation (ROSEM-MAP), 64 = Total Variation (OSL-RBI),
% 65 = Total Variation (OSL-COSEM), 66 = Total Variation (PKMA),
% 67 = Anisotropic Diffusion (OSL-MLEM), 68 = Anisotropic Diffusion (OSL-OSEM),
% 69 = Anisotropic Diffusion (BSREM), 70 = Anisotropic Diffusion (MBSREM),
% 71 = Anisotropic Diffusion (ROSEM-MAP), 72 = Anisotropic Diffusion (OSL-RBI),
% 73 = Anisotropic Diffusion (OSL-COSEM), 74 = Anisotropic Diffusion (PKMA),
% 75 = Asymmetric Parallel Level Sets (OSL-MLEM), 76 = Asymmetric Parallel Level Sets (OSL-OSEM),
% 77 = Asymmetric Parallel Level Sets (BSREM), 78 = Asymmetric Parallel Level Sets (MBSREM),
% 79 = Asymmetric Parallel Level Sets (ROSEM-MAP), 80 = Asymmetric Parallel Level Sets (OSL-RBI),
% 81 = Asymmetric Parallel Level Sets (OSL-COSEM), 82 = Asymmetric Parallel Level Sets (PKMA),
% 83 = Total Generalized Variation (OSL-MLEM), 84 = Total Generalized Variation (OSL-OSEM),
% 85 = Total Generalized Variation (BSREM), 86 = Total Generalized Variation (MBSREM),
% 87 = Total Generalized Variation (ROSEM-MAP), 88 = Total Generalized Variation (OSL-RBI),
% 89 = Total Generalized Variation (OSL-COSEM), 90 = Total Generalized Variation (PKMA),
% 91 = Non-Local Means (OSL-MLEM), 92 = Non-Local Means (OSL-OSEM), 93 = Non-Local Means (BSREM),
% 94 = Non-Local Means (MBSREM), 95 = Non-Local Means (ROSEM-MAP), 96 = Non-Local Means (OSL-RBI),
% 97 = Non-Local Means (OSL-COSEM), 98 = Non-Local Means (PKMA), 99 = Custom (OSL-MLEM),
% 100 = Custom (OSL-OSEM), 101 = Custom (BSREM), 102 = Custom (MBSREM), 103 = Custom (ROSEM-MAP),
% 104 = Custom (OSL-RBI), 105 = Custom (OSL-COSEM), 106 = Custom (PKMA)
% Inputing algorithm number that does not exist in the cell array shows all
% the available algorithms present in the cell array
algorithms = [2];
% Use this value to scale the color scale in the image (higher values make
% low count areas brighter)
color_scale = 1;
% From which reconstruction should the color scale be taken
% If zero, then each algorithm has its own color scala (from zero to their
% own maximum value, i.e. there is no global limit)
% NOTE: The numbering is according to the length of the above algorithms
% vector, e.g. if you have algorithms = [2, 4, 5] and color_from_algo = 2
% then the scale will be taken from RAMLA reconstruction (second element of
% algorithms)
color_from_algo = 0;
% Visualization plane
% Choose the plane where the visualization takes place
% 1 = Transverse, 2 = Coronal/frontal, 3 = Sagittal
v_plane = 1;
if exist('f_osem','var') && ~exist('pz','var')
pz = cell(95,1);
pz{2} = f_osem;
end
img = check_algorithms(pz, algorithms, color_from_algo);
if isempty(img)
return
end
if length(algorithms) >= 4
hh = 2;
else
hh = 1;
end
if length(algorithms) < 4
jj = min(3, length(algorithms));
elseif length(algorithms) == 4
jj = 2;
else
jj = 3;
end
set(0,'units','pixels')
gg = get(0,'ScreenSize');
if jj > 4
im_size = gg(4)/(2.5 + (jj - 4)/2);
else
im_size = gg(4)/2.5;
end
figure
set(gcf, 'Position', [min(gg(3)/2-im_size/2*jj,gg(3)), min(gg(4)/2-im_size/2*hh, im_size * jj), gg(4), im_size * hh]);
clim = [0 max(max(max(max(img(:,:,2:end-1,end)))))/color_scale];
if v_plane == 2
koko = size(img,1);
elseif v_plane == 3
koko = size(img,2);
else
koko = size(img,3);
end
for kk = 1 : koko
for ll = 1 : length(algorithms)
img = pz{algorithms(ll)};
if v_plane == 2
img = rot90(permute(img, [3 2 1 4]),2);
elseif v_plane == 3
img = permute(img, [1 3 2 4]);
end
subplot(hh, jj, ll)
if color_from_algo == 0
clim = [0 max(max(max(max(img(:,:,2:end-1,end)))))/color_scale];
imagesc(img(:,:,kk,end),clim)
else
imagesc(img(:,:,kk,end),clim)
end
axis image off
title([char(algo_char(algorithms(ll))) ' slice = ' num2str(kk)])
end
pause%(0.1)
drawnow
end
%% Visualize N iterations of a single reconstruction for one time step for all slices
algo_char = algorithms_char();
algorithms = 2;
% Use this value to scale the color scale in the image (higher values make
% low count areas brighter)
color_scale = 1;
% Visualization plane
% Choose the plane where the visualization takes place
% 1 = Transverse, 2 = Coronal/frontal, 3 = Sagittal
v_plane = 1;
% How many iterations in the image
% Initial values can be included as iterations as they are saved as such
% N_iter LAST iterations will be used for visualization
N_iter = 4;
color_from_algo = 1;
if exist('f_osem','var') && ~exist('pz','var')
pz = cell(95,1);
pz{2} = f_osem;
end
img = check_algorithms(pz, algorithms, color_from_algo);
if isempty(img)
return
end
if N_iter > 3
hh = 2;
else
hh = 1;
end
if N_iter < 4
jj = min(3, N_iter);
else
jj = 3;
end
set(0,'units','pixels')
gg = get(0,'ScreenSize');
if jj > 4
im_size = gg(4)/(2.5 + (jj - 4)/2);
else
im_size = gg(4)/2.5;
end
figure
set(gcf, 'Position', [min(gg(3)/2-im_size/2*jj,gg(3)), min(gg(4)/2-im_size/2*hh, im_size * jj), gg(4), im_size * hh]);
if v_plane == 2
koko = size(img,1);
img = rot90(permute(img, [3 2 1 4]),2);
elseif v_plane == 3
koko = size(img,2);
img = permute(img, [1 3 2 4]);
else
koko = size(img,3);
end
for kk = 1 : koko
for ll = 1 : N_iter
clim = [0 max(max(max(max(img(:,:,2:end-1,end - ll + 1)))))/color_scale];
subplot(hh, jj, ll)
imagesc(img(:,:,kk,end - ll + 1),clim)
axis image
title([char(algo_char(algorithms)) ', iteration = ' num2str(size(img,4) - ll) ', slice = ' num2str(kk)])
end
pause(0.25)
drawnow
end
%% Compare several reconstructions for one time step for all slices, last iteration, with the source image obtained from GATE data
% NOTE: This is valid only for GATE data
algo_char = algorithms_char();
% This can be used to compare the achieved reconstruction with the
% coordinates from which the actual radioactive decay happened
% I.e. these allow for the error checking of the reconstructed data
algorithms = [2];
% Use this value to scale the color scale in the image (higher values make
% low count areas brighter)
color_scale = 1;
% From according to which reconstruction should the color scale be taken
% If zero, then each algorithm has its own color scala (from zero to their
% own maximum value, i.e. there is no global limit)
% NOTE: The numbering is according to the length of algorithms vector, e.g.
% if you have algorithms = [2, 4, 5] and color_from_algo = 2 then the scale
% will be taken from RAMLA reconstruction (second element of algorithms)
color_from_algo = 1;
% How is the source image formed?
% 1 = Form the source image by using only coincidences that originate from
% the very same location (source coordinates are the same)
% 2 = Form the source image by using only the first single
% 3 = Form the source image by using only the second single
% 4 = Form the source image by using both singles (singles mode)
% 5 = Form the source image by using both singles and then dividing the
% counts by two
% 6 = Form the source image by using the average coordinates from both
% singles
% 7 = Form the source image by using the true coincidences (requires
% obtain_trues = true)
source_coordinates = 1;
% Visualization plane
% Choose the plane where the visualization takes place
% 1 = Transverse, 2 = Coronal/frontal, 3 = Sagittal
v_plane = 1;
% The source data was obtained from
% 1 = ASCII, 2 = LMF, 3 = ROOT
source = 1;
if exist('f_osem','var') && ~exist('pz','var')
pz = cell(95,1);
pz{2} = f_osem;
end
img = check_algorithms(pz, algorithms, color_from_algo);
if isempty(img)
return
end
if length(algorithms) + 1 > 3
hh = 2;
else
hh = 1;
end
if length(algorithms) + 1 < 4
jj = min(3, length(algorithms) + 1);
else
jj = 3;
end
set(0,'units','pixels')
gg = get(0,'ScreenSize');
if jj > 4
im_size = gg(4)/(2.5 + (jj - 4)/2);
else
im_size = gg(4)/2.5;
end
figure
set(gcf, 'Position', [min(gg(3)/2-im_size/2*jj,gg(3)), min(gg(4)/2-im_size/2*hh, im_size * jj), gg(4), im_size * hh]);
if source == 1
load([image_properties.machine_name '_Ideal_image_coordinates_' image_properties.name '_ASCII.mat'])
elseif source == 2
load([image_properties.machine_name '_Ideal_image_coordinates_' image_properties.name '_LMF.mat'])
elseif source == 3
load([image_properties.machine_name '_Ideal_image_coordinates_' image_properties.name '_ROOT.mat'])
end
if source_coordinates == 1
FOV = C{1};
elseif source_coordinates == 2
FOV = C{2};
elseif source_coordinates == 3
FOV = C{3};
elseif source_coordinates == 4
FOV = C{4};
elseif source_coordinates == 5
FOV = C{5};
elseif source_coordinates == 6
FOV = C{6};
elseif source_coordinates == 7
FOV = C{7};
end
clim = [0 max(max(max(max(img(:,:,2:end-1,end)))))/color_scale];
clim2 = [0 max(max(max(max(FOV(:,:,2:end-1)))))/color_scale];
if v_plane == 2
koko = size(img,1);
FOV = rot90(permute(FOV, [3 2 1]),2);
elseif v_plane == 3
koko = size(img,2);
FOV = permute(FOV, [1 3 2]);
else
koko = size(img,3);
end
for kk = 1 : koko
for ll = 1 : length(algorithms)
img = pz{algorithms(ll)};
if v_plane == 2
img = rot90(permute(img, [3 2 1 4]),2);
elseif v_plane == 3
img = permute(img, [1 3 2 4]);
end
subplot(hh, jj, ll)
if color_from_algo == 0
clim = [0 max(max(max(max(img(:,:,2:end-1,end)))))/color_scale];
imagesc(img(:,:,kk,end),clim)
else
imagesc(img(:,:,kk,end),clim)
end
axis image
title([char(algo_char(algorithms(ll))) ' slice = ' num2str(kk)])
end
subplot(hh, jj, ll + 1)
imagesc(FOV(:,:,kk),clim2)
axis image
title(['Original decay image, slice = ' num2str(kk)])
pause(0.25)
drawnow
end
%% Examine the entire volume for one reconstruction
% NOTE: Use of this section requires vol3D v2
% Download:
% https://se.mathworks.com/matlabcentral/fileexchange/22940-vol3d-v2
algo_char = algorithms_char();
algorithms = 2;
% The scale value for the pixel alpha values. Higher values will make the
% pixels more transparent, allowing areas of higher activity to be seen
% through background noise
alpha_scale = 1;
if exist('f_osem','var') && ~exist('pz','var')
pz = cell(95,1);
pz{2} = f_osem;
end
img = check_algorithms(pz, algorithms, 1);
if isempty(img)
return
end
alpha_scaling = max(max(max(img(:,:,:,end)))) * alpha_scale;
alpha = permute(img(:,:,:,end), [3 2 1 4]);
alpha = alpha./alpha_scaling;
alpha(alpha > 1) = 1;
figure;vol3d('CData', permute(img(:,:,:,end), [3 2 1 4]), 'Alpha', alpha);
set(gca, 'View', [45 30]);
set(gca, 'XLim', [0 128]);
set(gca, 'ZLim', [0 128]);
set(gcf, 'Color', 'w');
%% Visualize simultanously all the views for n algorithms
% NOTE: Due to likely different number of slices, the smallers views will
% not be updated once they reach maximum number of slices
algo_char = algorithms_char();
algorithms = [2];
% Use this value to scale the color scale in the image (higher values make
% low count areas brighter)
color_scale = 1;
% From which reconstruction should the color scale be taken
% If zero, then each algorithm has its own color scala (from zero to their
% own maximum value, i.e. there is no global limit)
% NOTE: The numbering is according to the length of the above algorithms
% vector, e.g. if you have algorithms = [2, 4, 5] and color_from_algo = 2
% then the scale will be taken from RAMLA reconstruction (second element of
% algorithms)
color_from_algo = 1;
if exist('f_osem','var') && ~exist('pz','var')
pz = cell(95,1);
pz{2} = f_osem;
end
img = check_algorithms(pz, algorithms, color_from_algo);
if isempty(img)
return
end
hh = numel(algorithms);
jj = 3;
set(0,'units','pixels')
gg = get(0,'ScreenSize');
im_size = gg(4)/2.5;
figure
set(gcf, 'Position', [min(gg(3)/2-im_size/2*jj,gg(3)), min(gg(4)/2-im_size/2*hh, gg(4)), im_size * jj, im_size * hh]);
img = pz{algorithms(1)};
koko1 = size(img,1);
koko2 = size(img,2);
koko3 = size(img,3);
clim = [0 max(max(max(max(img(:,:,:,end)))))/color_scale];
for kk = 1 : max([koko1, koko2, koko3])
for ll = 1 : numel(algorithms)
img = pz{algorithms(ll)};
koko1 = size(img,1);
koko2 = size(img,2);
koko3 = size(img,3);
if kk <= koko3
subplot(hh, jj, 1 + jj*(ll - 1))
if color_from_algo == 0
clim = [0 max(max(max(max(img(:,:,2:end-1,end)))))/color_scale];
imagesc(img(:,:,kk,end),clim)
else
imagesc(img(:,:,kk,end),clim)
end
title([char(algo_char(algorithms(ll))) ' slice = ' num2str(kk) ', transverse'])
else
subplot(hh, jj, 1 + jj*(ll - 1))
if color_from_algo == 0
clim = [0 max(max(max(max(img(:,:,2:end-1,end)))))/color_scale];
imagesc(img(:,:,koko3,end),clim)
else
imagesc(img(:,:,koko3,end),clim)
end
title([char(algo_char(algorithms(ll))) ' slice = ' num2str(koko1) ', transverse'])
end
axis image
if kk <= koko1
img = rot90(permute(img, [3 2 1 4]),2);
subplot(hh, jj, 2 + jj*(ll - 1))
if color_from_algo == 0
clim = [0 max(max(max(max(img(:,:,2:end-1,end)))))/color_scale];
imagesc(img(:,:,kk,end),clim)
else
imagesc(img(:,:,kk,end),clim)
end
title([char(algo_char(algorithms(ll))) ' slice = ' num2str(kk) ', frontal'])
else
img = rot90(permute(img, [3 2 1 4]),2);
subplot(hh, jj, 2 + jj*(ll - 1))
if color_from_algo == 0
clim = [0 max(max(max(max(img(:,:,2:end-1,end)))))/color_scale];
imagesc(img(:,:,koko1,end),clim)
else
imagesc(img(:,:,koko1,end),clim)
end
title([char(algo_char(algorithms(ll))) ' slice = ' num2str(koko1) ', frontal'])
end
axis image
if kk <= koko2
img = permute(img, [3 1 2 4]);
subplot(hh, jj, 3 + jj*(ll - 1))
if color_from_algo == 0
clim = [0 max(max(max(max(img(:,:,2:end-1,end)))))/color_scale];
imagesc(img(:,:,kk,end),clim)
else
imagesc(img(:,:,kk,end),clim)
end
title([char(algo_char(algorithms(ll))) ' slice = ' num2str(kk) ', sagittal'])
else
img = permute(img, [3 1 2 4]);
subplot(hh, jj, 3 + jj*(ll - 1))
if color_from_algo == 0
clim = [0 max(max(max(max(img(:,:,2:end-1,end)))))/color_scale];
imagesc(img(:,:,koko2,end),clim)
else
imagesc(img(:,:,koko2,end),clim)
end
title([char(algo_char(algorithms(ll))) ' slice = ' num2str(koko2) ', sagittal'])
end
axis image
end
pause(0.05)
drawnow
end
%% Dynamic visualization
% Time series of images, n reconstructions, optionally also the
% "true" image. This section requires image_properties to be loaded.
algo_char = algorithms_char();
algorithms = [2];
% Use this value to scale the color scale in the image (higher values make
% low count areas brighter)
color_scale = 1;
% From according to which reconstruction should the color scale be taken
% If zero, then each algorithm has its own color scala (from zero to their
% own maximum value, i.e. there is no global limit)
% NOTE: The numbering is according to the length of algorithms vector, e.g.
% if you have algorithms = [2, 4, 5] and color_from_algo = 2 then the scale
% will be taken from RAMLA reconstruction (second element of algorithms)
color_from_algo = 1;
% Visualization plane
% Choose the plane where the visualization takes place
% 1 = Transverse, 2 = Coronal/frontal, 3 = Sagittal
v_plane = 1;
% From which slice is the dynamic time series obtained?
slice = 40;
% The source data was obtained from
% 0 = No source image, 1 = ASCII, 2 = LMF, 3 = ROOT
source = 0;
% How is the source image formed?
% 1 = Form the source image by using only coincidences that originate from
% the very same location (source coordinates are the same)
% 2 = Form the source image by using only the first single
% 3 = Form the source image by using only the second single
% 4 = Form the source image by using both singles (singles mode)
% 5 = Form the source image by using both singles and then dividing the
% counts by two
% 6 = Form the source image by using the average coordinates from both
% singles
% 7 = Form the source image by using the true coincidences (requires
% obtain_trues = true)
source_coordinates = 1;
if exist('f_osem','var') && ~exist('pz','var')
pz = cell(95,1);
pz{2} = f_osem;
end
img = check_algorithms(pz, algorithms, color_from_algo);
if isempty(img)
return
end
if length(algorithms) + nnz(source) > 3
hh = 3;
else
hh = 1;
end
if length(algorithms) + nnz(source) < 4
jj = min(3, length(algorithms) + nnz(source));
else
jj = 3;
end
set(0,'units','pixels')
gg = get(0,'ScreenSize');
if jj > 4
im_size = gg(4)/(2.5 + (jj - 4)/2);
else
im_size = gg(4)/2.5;
end
figure
set(gcf, 'Position', [min(gg(3)/2-im_size/2*jj,gg(3)), min(gg(4)/2-im_size/2*hh, im_size * jj), gg(4), im_size * hh]);
if source == 1
load([image_properties.machine_name '_Ideal_image_coordinates_' image_properties.name '_ASCII.mat'])
elseif source == 2
load([image_properties.machine_name '_Ideal_image_coordinates_' image_properties.name '_LMF.mat'])
elseif source == 3
load([image_properties.machine_name '_Ideal_image_coordinates_' image_properties.name '_ROOT.mat'])
end
if v_plane == 2
koko = size(img,1);
if source > 0
clim2 = [0 max(max(max(max(FOV(slice,:,:)))))/color_scale];
end
clim = [0 max(max(max(max(img(slice,:,:,end)))))/color_scale];
elseif v_plane == 3
koko = size(img,2);
if source > 0
clim2 = [0 max(max(max(max(FOV(:,slice,:)))))/color_scale];
end
clim = [0 max(max(max(max(img(:,slice,:,end)))))/color_scale];
else
koko = size(img,3);
if source > 0
clim2 = [0 max(max(max(max(FOV(:,:,slice)))))/color_scale];
end
clim = [0 max(max(max(max(img(:,:,slice,end)))))/color_scale];
end
if slice > koko
error("Selected slice exceeds image size in the specified dimension/plane")
end
for kk = 1 : size(pz,2)
for ll = 1 : length(algorithms)
img = pz{algorithms(ll),kk};
if v_plane == 2
img = rot90(permute(img, [3 2 1 4]),2);
elseif v_plane == 3
img = permute(img, [1 3 2 4]);
end
subplot(hh, jj, ll)
if color_from_algo == 0
clim = [0 max(max(max(max(img(:,:,2:end-1,end)))))/color_scale];
imagesc(img(:,:,slice,end),clim)
else
imagesc(img(:,:,slice,end),clim)
end
axis image
title([char(algo_char(algorithms(ll))) ' time step = ' num2str(kk)])
end
if source > 0
if source_coordinates == 1
FOV = C{1,kk};
elseif source_coordinates == 2
FOV = C{2,kk};
elseif source_coordinates == 3
FOV = C{3,kk};
elseif source_coordinates == 4
FOV = C{4,kk};
elseif source_coordinates == 5
FOV = C{5,kk};
elseif source_coordinates == 6
FOV = C{6,kk};
elseif source_coordinates == 7
FOV = C{7};
end
if v_plane == 2
FOV = permute(FOV, [1 3 2]);
elseif v_plane == 3
FOV = rot90(permute(FOV, [3 2 1]),2);
end
subplot(hh, jj, ll + 1)
imagesc(FOV(:,:,slice),clim2)
axis image
title(['Original decay image, time step = ' num2str(kk)])
end
pause%(0.25)
drawnow
end