-
Notifications
You must be signed in to change notification settings - Fork 4
/
Copy pathchar.py
250 lines (211 loc) · 7.42 KB
/
char.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
from tensorflow import keras
import numpy
from keras.models import Sequential
from keras.layers import Dense
from keras.layers import Dropout
from keras.layers import LSTM , TimeDistributed , Dense, Dropout, Bidirectional, Concatenate, Embedding, Softmax , GRU, CuDNNGRU
from keras.layers import Lambda, concatenate, BatchNormalization
from keras.callbacks import ModelCheckpoint
from keras.utils import np_utils
import sys
import codecs
import os
import math
import operator
import json
from functools import reduce
# load ascii text and covert to lowercase
filename = "Sinhala_multipleSentenced.txt"
raw_text = open(filename).read()
raw_text = raw_text.lower()
# create mapping of unique chars to integers
chars = sorted(list(set(raw_text)))
char_to_int = dict((c, i) for i, c in enumerate(chars))
n_chars = len(raw_text)
n_vocab = len(chars)
print ("Total Characters: ", n_chars)
print ("Total Vocab: ", n_vocab)
# prepare the dataset of input to output pairs encoded as integers
seq_length = 100
dataX = []
dataY = []
for i in range(0, n_chars - seq_length, 1):
seq_in = raw_text[i:i + seq_length]
seq_out = raw_text[i + seq_length]
dataX.append([char_to_int[char] for char in seq_in])
dataY.append(char_to_int[seq_out])
n_patterns = len(dataX)
print ("Total Patterns: ", n_patterns)
# reshape X to be [samples, time steps, features]
X = numpy.reshape(dataX, (n_patterns, seq_length, 1))
# normalize
X = X / float(n_vocab)
# one hot encode the output variable
y = np_utils.to_categorical(dataY)
# define the LSTM model
def _build_character_block(
self, block, dropout=0.3,
filters=[64, 100], kernel_size=[3, 3],
pool_size=[2, 2], padding='valid', activation='relu',
kernel_initializer='glorot_normal'):
for i in range(len(filters)):
block = Conv1D(
filters=filters[i], kernel_size=kernel_size[i],
padding=padding, activation=activation,
kernel_initializer=kernel_initializer)(block)
block = Dropout(dropout)(block)
block = MaxPooling1D(pool_size=pool_size[i])(block)
block = GlobalMaxPool1D()(block)
block = Dense(128, activation='relu')(block)
return block
model = Sequential()
model.add(Bidirectional(LSTM(256, input_shape=(X.shape[1], X.shape[2]), return_sequences=True)))
#model.add(LSTM(256, input_shape=(X.shape[1], X.shape[2]), return_sequences=True))
model.add(Dropout(0.2))
model.add(Bidirectional(LSTM(256)))
#model.add(LSTM(256))
model.add(Dropout(0.2))
model.add(Dense(y.shape[1], activation='softmax'))
model.compile(loss='categorical_crossentropy', optimizer='adam')
'''
# define the checkpoint
#filepath="weights-improvement-{epoch:02d}-{loss:.4f}.hdf5"
filepath="SinhalaMultipleSentence-improvement-{epoch:02d}-{loss:.4f}-big.hdf5"
checkpoint = ModelCheckpoint(filepath, monitor='loss', verbose=1, save_best_only=True, mode='min')
callbacks_list = [checkpoint]
model.fit(X, y, epochs=15, batch_size=128, callbacks=callbacks_list)
'''
# load the network weights
filename = "SinhalaMultipleSentence-improvement-15-0.4050-big.hdf5"
model.load_weights(filename)
model.compile(loss='categorical_crossentropy', optimizer='adam')
int_to_char = dict((i, c) for i, c in enumerate(chars))
import sys
import numpy
out = open('output.txt', 'w')
# pick a random seed
for j in range(100):
start = numpy.random.randint(0, len(dataX)-1)
pattern = dataX[start]
print ("\n")
print ("\nSeed:")
print ("\"", ''.join([int_to_char[value] for value in pattern]), "\"")
# generate characters
print("\nGenerated:")
for i in range(160):
x = numpy.reshape(pattern, (1, len(pattern), 1))
x = x / float(n_vocab)
prediction = model.predict(x, verbose=0)
index = numpy.argmax(prediction)
result = int_to_char[index]
seq_in = [int_to_char[value] for value in pattern]
out.write(str(result))
sys.stdout.write(result)
pattern.append(index)
pattern = pattern[1:len(pattern)]
#output_filename = 'output.txt'
#save_doc(result, output_filename)
out.close()
print( "\nDone.")
def fetch_data(cand, ref):
""" Store each reference and candidate sentences as a list """
references = []
if '.txt' in ref:
reference_file = codecs.open(ref, 'r', 'utf-8')
references.append(reference_file.readlines())
else:
for root, dirs, files in os.walk(ref):
for f in files:
reference_file = codecs.open(os.path.join(root, f), 'r', 'utf-8')
references.append(reference_file.readlines())
candidate_file = codecs.open(cand, 'r', 'utf-8')
candidate = candidate_file.readlines()
return candidate, references
def count_ngram(candidate, references, n):
clipped_count = 0
count = 0
r = 0
c = 0
for si in range(len(candidate)):
# Calculate precision for each sentence
ref_counts = []
ref_lengths = []
# Build dictionary of ngram counts
for reference in references:
ref_sentence = reference[si]
ngram_d = {}
words = ref_sentence.strip().split()
ref_lengths.append(len(words))
limits = len(words) - n + 1
# loop through the sentance consider the ngram length
for i in range(limits):
ngram = ' '.join(words[i:i+n]).lower()
if ngram in ngram_d.keys():
ngram_d[ngram] += 1
else:
ngram_d[ngram] = 1
ref_counts.append(ngram_d)
# candidate
cand_sentence = candidate[si]
cand_dict = {}
words = cand_sentence.strip().split()
limits = len(words) - n + 1
for i in range(0, limits):
ngram = ' '.join(words[i:i + n]).lower()
if ngram in cand_dict:
cand_dict[ngram] += 1
else:
cand_dict[ngram] = 1
clipped_count += clip_count(cand_dict, ref_counts)
count += limits
r += best_length_match(ref_lengths, len(words))
c += len(words)
if clipped_count == 0:
pr = 0
else:
pr = float(clipped_count) / count
bp = brevity_penalty(c, r)
return pr, bp
def clip_count(cand_d, ref_ds):
"""Count the clip count for each ngram considering all references"""
count = 0
for m in cand_d.keys():
m_w = cand_d[m]
m_max = 0
for ref in ref_ds:
if m in ref:
m_max = max(m_max, ref[m])
m_w = min(m_w, m_max)
count += m_w
return count
def best_length_match(ref_l, cand_l):
"""Find the closest length of reference to that of candidate"""
least_diff = abs(cand_l-ref_l[0])
best = ref_l[0]
for ref in ref_l:
if abs(cand_l-ref) < least_diff:
least_diff = abs(cand_l-ref)
best = ref
return best
def brevity_penalty(c, r):
if c > r:
bp = 1
else:
bp = math.exp(1-(float(r)/c))
return bp
def geometric_mean(precisions):
return (reduce(operator.mul, precisions)) ** (1.0 / len(precisions))
def BLEU(candidate, references):
precisions = []
for i in range(1):
pr, bp = count_ngram(candidate, references, i+1)
precisions.append(pr)
bleu = geometric_mean(precisions) * bp
return bleu
#candidate, references = fetch_data(sys.argv[1], sys.argv[2])
candidate, references = fetch_data('generated.txt','Sinhala_multipleSentenced.txt')
bleu = BLEU(candidate, references)
print(bleu)
out = open('bleu_out.txt', 'w')
out.write(str(bleu))
out.close()