-
Notifications
You must be signed in to change notification settings - Fork 2
/
Copy pathn-gram_BLEU.py
126 lines (111 loc) · 3.69 KB
/
n-gram_BLEU.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
import codecs
import codecs
import os
import math
import operator
import json
from functools import reduce
def fetch_data(cand, ref):
""" Store each reference and candidate sentences as a list """
references = []
if '.txt' in ref:
#reference_file = codecs.open(ref, 'r', 'utf-8')
reference_file = codecs.open(ref, 'r', encoding='latin1')
references.append(reference_file.readlines())
else:
for root, dirs, files in os.walk(ref):
for f in files:
#reference_file = codecs.open(os.path.join(root, f), 'r', 'utf-8')
references.append(reference_file.readlines())
#candidate_file = codecs.open(cand, 'r', 'utf-8')
candidate_file = codecs.open(cand, 'r', encoding='latin1')
candidate = candidate_file.readlines()
return candidate, references
def count_ngram(candidate, references, n):
clipped_count = 0
count = 0
r = 0
c = 0
for si in range(len(candidate)):
# Calculate precision for each sentence
ref_counts = []
ref_lengths = []
# Build dictionary of ngram counts
for reference in references:
ref_sentence = reference[si]
ngram_d = {}
words = ref_sentence.strip().split()
ref_lengths.append(len(words))
limits = len(words) - n + 1
# loop through the sentance consider the ngram length
for i in range(limits):
ngram = ' '.join(words[i:i+n]).lower()
if ngram in ngram_d.keys():
ngram_d[ngram] += 1
else:
ngram_d[ngram] = 1
ref_counts.append(ngram_d)
# candidate
cand_sentence = candidate[si]
cand_dict = {}
words = cand_sentence.strip().split()
limits = len(words) - n + 1
for i in range(0, limits):
ngram = ' '.join(words[i:i + n]).lower()
if ngram in cand_dict:
cand_dict[ngram] += 1
else:
cand_dict[ngram] = 1
clipped_count += clip_count(cand_dict, ref_counts)
count += limits
r += best_length_match(ref_lengths, len(words))
c += len(words)
if clipped_count == 0:
pr = 0
else:
pr = float(clipped_count) / count
bp = brevity_penalty(c, r)
return pr, bp
def clip_count(cand_d, ref_ds):
"""Count the clip count for each ngram considering all references"""
count = 0
for m in cand_d.keys():
m_w = cand_d[m]
m_max = 0
for ref in ref_ds:
if m in ref:
m_max = max(m_max, ref[m])
m_w = min(m_w, m_max)
count += m_w
return count
def best_length_match(ref_l, cand_l):
"""Find the closest length of reference to that of candidate"""
least_diff = abs(cand_l-ref_l[0])
best = ref_l[0]
for ref in ref_l:
if abs(cand_l-ref) < least_diff:
least_diff = abs(cand_l-ref)
best = ref
return best
def brevity_penalty(c, r):
if c > r:
bp = 1
else:
bp = math.exp(1-(float(r)/c))
return bp
def geometric_mean(precisions):
return (reduce(operator.mul, precisions)) ** (1.0 / len(precisions))
def BLEU(candidate, references):
precisions = []
for i in range(1):
pr, bp = count_ngram(candidate, references, i+1)
precisions.append(pr)
bleu = geometric_mean(precisions) * bp
return bleu
#candidate, references = fetch_data(sys.argv[1], sys.argv[2])
candidate, references = fetch_data('2111.13654_generatedAbstract.txt','2111.13654_originalAbstract.txt')
bleu = BLEU(candidate, references)
print(bleu)
out = open('bleu_out.txt', 'w')
out.write(str(bleu))
out.close()