-
Notifications
You must be signed in to change notification settings - Fork 1
/
Copy pathpass.scm
874 lines (815 loc) · 29.4 KB
/
pass.scm
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
(declare (unit pass)
(uses nodes arch tree utils))
(use matchable)
(use srfi-1)
(include "struct-syntax")
;; do some macro expansion
(define (expand e)
(match e
(('let (bindings ...) body ...)
(expand
`((lambda ,(map car bindings)
(begin ,@body))
,@(map (lambda (binding) (car (cdr binding))) bindings))))
(('begin) '())
(('begin body)
(expand body))
(('begin body1 body2 ...)
(expand
(let ((a (gensym)))
`((lambda (,a)
(begin ,@body2)) ,body1))))
(('not ex1)
(expand
`(if ,ex1 #f #t)))
(('or) #f)
(('or ex1)
(expand ex1))
(('or ex1 ex2 ...)
(expand
(let ((tmp (gensym)))
`(let ((,tmp ,ex1))
(if ,tmp
,tmp
(or ,@ex2))))))
(('and) #t)
(('and ex1)
(expand ex1))
(('and ex1 ex2 ...)
(expand
`(if ,ex1
(and ,@ex2)
#f)))
(('lambda (bindings ...) e1 e2 rest ...)
(expand `(lambda (,@bindings)
(begin ,e1 ,e2 ,@rest))))
((combination ...)
(map expand combination))
(_ e)))
;; convert to high-level AST
;;
(define *primitives*
'(fx+ fx- fx* fx/ fx< fx> fx<= fx>= fx= car cdr cons null? pair? list? boolean? integer? string?))
(define (primitive? op)
(if (memq op *primitives*) #t #f))
(define (convert-source e)
(define (cs e)
(match e
(('if x y)
(make-if (cs x) (cs y) '()))
(('if x y z)
(make-if (cs x) (cs y) (cs z)))
(('if _ ...)
(error cs "ill-formed conditional expression"))
(('lambda (bindings ...) body)
(make-lambda (gensym 'f) bindings (cs body) '()))
(('lambda _ ...)
(error cs "ill-formed conditional expression"))
((? null?)
(make-constant e))
((? boolean?)
(make-constant e))
((? number?)
(make-constant e))
((_ ...)
(make-comb (map cs e)))
((? symbol?)
(make-variable e))))
(cs e))
(define select-matching
(lambda (fn lst)
(reverse
(fold (lambda (x acc)
(if (fn x)
(cons x acc)
acc))
(list)
lst))))
(define (find-mapping name scopes)
(let f ((scopes scopes))
(if (null? scopes)
(if (primitive? name)
name
(error 'alpha-convert "symbol not found" name))
(let ((mapping (assq name (car scopes))))
(if mapping
(cdr mapping)
(f (cdr scopes)))))))
(define (alpha-convert node)
(define (alpha-convert node scopes)
(struct-case node
((lambda name args body)
(let ((mappings (map (lambda (arg) (cons arg (gensym 't))) args)))
(make-lambda
name
(map cdr mappings)
(alpha-convert body (cons mappings scopes))
'())))
((if test conseq altern)
(make-if
(alpha-convert test scopes)
(alpha-convert conseq scopes)
(alpha-convert altern scopes)))
((prim name args cexp)
(make-prim
name
(map (lambda (arg) (alpha-convert arg scopes)) args)
(alpha-convert cexp scopes)))
((comb args)
(make-comb
(map (lambda (arg) (alpha-convert arg scopes)) args)))
((variable name)
(make-variable (find-mapping name scopes)))
(else node)))
(alpha-convert node (list)))
(define (cps-convert node)
(define (cps-convert node cont)
(struct-case node
((constant)
(if (null? cont)
node
(make-comb (list cont node))))
((variable)
(if (null? cont)
node
(make-comb (list cont node))))
((lambda name args body)
(let* ((cn (gensym 'c))
(node-cps (make-lambda
name
`(,@args ,cn)
(cps-convert body (make-variable cn))
'())))
(if (null? cont)
node-cps
(make-comb (list cont node-cps)))))
((comb args)
;; x - combination args
;; y - new args for combination (x -> y)
;; z - args which are not atoms
;; w - names for continuations
(let f ((x args) (y '()) (z '()) (u '()) (w '()))
(cond
((null? x)
(let g ((form (make-comb (reverse (cons cont y)))) (y y) (z z) (u u) (w w))
(if (null? z)
form
(g
(cps-convert (car z)
(make-lambda
(car w)
(list (car u))
form
'()))
(cdr y)
(cdr z)
(cdr u)
(cdr w)))))
((constant? (car x))
(f (cdr x) (cons (car x) y) z u w))
((variable? (car x))
(f (cdr x) (cons (car x) y) z u w))
((lambda? (car x))
(f (cdr x) (cons (cps-convert (car x) '()) y) z u w))
(else
(let ((nm (gensym 't)))
(f (cdr x) (cons (make-variable nm) y) (cons (car x) z) (cons nm u) (cons (gensym 't) w)))))))
((if test conseq altern)
(let ((kn (gensym 't))
(fn (gensym 'f))
(cn (gensym 'f))
(tn (gensym 't)))
(make-comb
(list (make-lambda fn (list kn)
(cps-convert test
(make-lambda cn (list tn)
(make-if
(make-variable tn)
(cps-convert conseq (make-variable kn))
(cps-convert altern (make-variable kn)))
'()))
'())
cont))))
(else (error 'cps-convert "not an AST node" node))))
(let ((cn (gensym 'f))
(tn (gensym 't)))
(cps-convert
node
(make-lambda cn (list tn)
(make-prim
(make-variable 'return)
(list (make-variable tn))
(make-variable tn) (make-nil))
'()))))
;;
;; reduce the administrative reducible expressions produced by the CPS transform
;;
;; Example: ((lambda (x) ... x ...) v)
;; => ... x ...
;;
(define (beta-reduce cexp)
(define (walk-cexp cexp)
(struct-case cexp
((variable)
cexp)
((constant)
cexp)
((if test conseq altern)
(make-if
test
(walk-cexp conseq)
(walk-cexp altern)))
((lambda name args body)
(make-lambda
name
args
(walk-cexp body)
'()))
((comb args)
(let* ((fn-reduced (walk-cexp (car args)))
(args-reduced (map (lambda (arg) (walk-cexp arg)) (cdr args))))
(cond
;; reduce this comb if the first object is a lambda and none of the other objects are lambdas
((and (lambda? fn-reduced)
(fold (lambda (arg x)
(if (lambda? arg) #f x))
#t args-reduced))
(substitute-vars (lambda-body fn-reduced) (lambda-args fn-reduced) args-reduced))
(else (make-comb (cons fn-reduced args-reduced))))))
((prim name args result cexp)
(make-prim name
args
result
(walk-cexp cexp)))
((nil)
cexp)
(else (assert-not-reached))))
(walk-cexp cexp))
(define (substitute-vars cexp names objects)
(let ((mappings (fold (lambda (name obj mappings)
(cons (cons name obj) mappings))
'() names objects)))
(define (walk-cexp cexp)
(struct-case cexp
((variable name)
(cond
((assq name mappings)
=> (lambda (pair) (cdr pair)))
(else cexp)))
((constant)
cexp)
((if test conseq altern)
(make-if (walk-cexp test) (walk-cexp conseq) (walk-cexp altern)))
((lambda name args body free-vars)
(make-lambda
name
args
(substitute-vars body (lset-difference names args) objects)
'()))
((comb args)
(make-comb (map (lambda (arg)
(walk-cexp arg))
args)))
((prim name args result cexp)
(make-prim name
(map (lambda (arg)
(walk-cexp arg))
args)
result
(walk-cexp cexp)))
((nil)
cexp)
(else (assert-not-reached))))
(walk-cexp cexp)))
(define (identify-primitives cexp)
(struct-case cexp
((variable)
cexp)
((constant)
cexp)
((if test conseq altern)
(make-if
(identify-primitives test)
(identify-primitives conseq)
(identify-primitives altern)))
((lambda name args body)
(make-lambda
name
args
(identify-primitives body)
'()))
((comb args)
(if (and (variable? (car args)) (primitive? (variable-name (car args))))
(let* ((cont (car (reverse args)))
(result (cond
((lambda? cont)
(make-variable (car (lambda-args cont))))
((variable? cont)
(make-variable (gensym 't)))
(else (error 'identify-primitives))))
(new-cont (cond
((lambda? cont)
(identify-primitives (lambda-body cont)))
((variable? cont)
(make-app cont (list result)))
(else (error 'identify-primitives)))))
(make-prim
(car args)
(cdr (reverse (cdr args)))
result
new-cont))
(make-app (identify-primitives (car args)) (map identify-primitives (cdr args)))))
((prim)
cexp)
(else (error 'identify-primitives "not an AST node" cexp))))
(define (raise-lambda node)
;; raise all lambda definitions to the top of the this lambda body
(define (filter lst)
(select-matching
(lambda (x)
(lambda? x))
lst))
(define (collect node)
;; collect nested lambda nodes in this scope
(struct-case node
((lambda)
(list node))
((prim name args result cexp)
(append (filter args) (collect cexp)))
((if test conseq altern)
(append (collect test) (collect conseq) (collect altern)))
((app name args)
(filter (cons name args)))
(else (list))))
(define (rewrite node)
;; rewrite tree, replacing lambda nodes with their names
(struct-case node
((lambda name)
(make-variable name))
((prim name args result cexp)
(make-prim name (map rewrite args) result (rewrite cexp)))
((if test conseq altern)
(make-if (rewrite test) (rewrite conseq) (rewrite altern)))
((app name args)
(make-app (rewrite name) (map rewrite args)))
(else node)))
(define (normalize node)
(cond
((lambda? node)
(let* ((name (lambda-name node))
(args (lambda-args node))
(body (lambda-body node))
(defs (map normalize (collect body))))
(if (null? defs)
node
(make-lambda name args (make-fix defs (rewrite body)) '()))))
(else
(let* ((name (gensym 'f))
(args (list))
(body node)
(defs (map normalize (collect body))))
(if (null? defs)
node
(make-fix defs (rewrite body)))))))
(let ((node (normalize node)))
(cond
((lambda? node)
(make-fix (list node)
(make-app
(make-variable (lambda-name node)) (list))))
(else node))))
(define (analyze-free-vars node)
(let ((union (lambda lists
(apply lset-union (cons eq? lists))))
(diff (lambda lists
(apply lset-difference (cons eq? lists)))))
(struct-case node
((variable name)
(diff (list name) *primitives*))
((constant) '())
((if test conseq altern)
(union
(analyze-free-vars test)
(analyze-free-vars conseq)
(analyze-free-vars altern)))
((app name args)
(let f ((x '()) (args (cons name args)))
(if (null? args)
x
(f (union x (analyze-free-vars (car args))) (cdr args)))))
((prim name args result cexp)
(let f ((x (list)) (args args))
(if (null? args)
(union x (diff (analyze-free-vars cexp) (list (variable-name result))))
(f (union x (analyze-free-vars (car args))) (cdr args)))))
((fix defs body)
(apply union (append (map analyze-free-vars defs)
(list (diff (analyze-free-vars body)
(map (lambda (def)
(lambda-name def))
defs))))))
((lambda name args body)
(lambda-free-vars-set! node
(diff (analyze-free-vars body) args))
(lambda-free-vars node))
((label)
(list))
((nil)
(list))
(else (error 'analyze-free-vars "not an AST node" node)))))
(define (closure-index name names)
(let f ((i 1) (names names))
(if (null? names)
(error "should not reach here")
(if (eq? name (car names))
i
(f (+ i 1) (cdr names))))))
(define (primitive-application args)
(let ((fun (car args)))
(if (memq (variable-name fun) *primitives*)
(error 'primitive-application "should not reach here" (variable-name fun))
(let ((fn (gensym 't)))
(make-select 0 fun (make-variable fn)
(make-app (make-variable fn) (cons fun (cdr args))))))))
;;
;; assume all functions escape -> each function takes a closure arg
;; optimize application of known functions by jumping directly to the function's label instead of using the function ptr stored in the function's closure.
;;
#| * 1. create closure record for each lambda
* 2. In fix body, replace each lambda reference (those not in the operator position) with closure reference
* 3. rewrite lambda applications. Extract function label from closure and apply function to closure + args
|#
(define (closure-convert-body node c-name free-vars)
(struct-case node
((fix defs body)
(let ((old-names (map (lambda (def)
(lambda-name def))
defs))
(x (map (lambda (def)
(closure-convert-body def c-name free-vars))
defs)))
(make-fix
x
(closure-convert-body
(let f ((x x) (y old-names) (form body))
(if (null? x)
form
(f (cdr x)
(cdr y)
#| when making the closure record, we use a label node to represent the lambda's function ptr |#
(make-record
(cons (make-label (lambda-name (car x)))
(map (lambda (v) (make-variable v))
(lambda-free-vars (car x))))
(make-variable (car y))
form))))
c-name free-vars))))
((lambda name args body free-vars)
(let* ((cn (gensym 'c))
(converted (make-lambda (gensym 'f) (cons cn args) (closure-convert-body body cn free-vars) '())))
(lambda-free-vars-set! converted free-vars)
converted))
((app name args)
(let f ((x (cons name args)) (y '()) (z '()))
(cond
((null? x)
(let g ((cexp (primitive-application (reverse y))) (z z))
(if (null? z)
cexp
(g (make-select
(closure-index (caar z) free-vars)
(make-variable c-name)
(make-variable (cdar z))
cexp)
(cdr z)))))
((variable? (car x))
(let ((name (variable-name (car x))))
(if (memq name free-vars)
(let ((exists (assq name z)) (temp (gensym 't)))
(if exists
(f (cdr x) (cons (make-variable (cdr exists)) y) z)
(f (cdr x) (cons (make-variable temp) y) (cons (cons name temp) z))))
(f (cdr x) (cons (car x) y) z))))
(else (f (cdr x) (cons (closure-convert-body (car x) #f '()) y) z)))))
((prim name args result cexp)
(let f ((x args) (y (list)) (z (list)))
(if (null? x)
(let g ((cexp (make-prim name (reverse y) result (closure-convert-body cexp c-name free-vars))) (z z))
(if (null? z)
cexp
(g (make-select
(closure-index (caar z) free-vars)
(make-variable c-name)
(make-variable (cdar z))
cexp)
(cdr z))))
(if (variable? (car x))
(let ((name (variable-name (car x))))
(if (memq name free-vars)
(let ((exists (assq name z)) (temp (gensym 't)))
(if exists
(f (cdr x) (cons (make-variable (cdr exists)) y) z)
(f (cdr x) (cons (make-variable temp) y) (cons (cons name temp) z))))
(f (cdr x) (cons (car x) y) z)))
(f (cdr x) (cons (closure-convert-body (car x) #f '()) y) z)))))
((record values name cexp)
(let f ((x values) (y (list)) (z (list)))
(if (null? x)
(let g ((cexp (make-record (reverse y) name (closure-convert-body cexp c-name free-vars))) (z z))
(if (null? z)
cexp
(g (make-select
(closure-index (caar z) free-vars)
(make-variable c-name)
(make-variable (cdar z))
cexp)
(cdr z))))
(struct-case (car x)
((variable name)
(if (memq name free-vars)
(let ((exists (assq name z)) (temp (gensym 't)))
(if exists
(f (cdr x) (cons (make-variable (cdr exists)) y) z)
(f (cdr x) (cons (make-variable temp) y) (cons (cons name temp) z))))
(f (cdr x) (cons (car x) y) z)))
((label name)
(f (cdr x) (cons (car x) y) z))
(else (error 'closure-convert-body (car x)))))))
((variable name)
(if (memq name free-vars)
(let ((temp (gensym 't)))
(make-select
(closure-index name free-vars)
(make-variable c-name)
(make-variable temp)
(make-variable temp)))
node))
((if test conseq altern)
(make-if
(closure-convert-body test c-name free-vars)
(closure-convert-body conseq c-name free-vars)
(closure-convert-body altern c-name free-vars)))
((constant)
node)
((label)
node)
((nil)
node)
(else (error 'closure-convert "node" node))))
(define (closure-convert node)
(analyze-free-vars node)
(closure-convert-body node #f '()))
(define (flatten node)
(letrec ((queue (list))
(queue-push! (lambda (node)
(set! queue
(append queue (list node)))))
(queue-pop! (lambda ()
(let ((front (car queue)))
(set! queue
(cdr queue))
front)))
(queue-empty? (lambda ()
(null? queue)))
(flatten-node (lambda (node)
(struct-case node
((fix defs body)
(let f ((x defs))
(if (null? x)
body
(begin
(queue-push! (car x))
(f (cdr x))))))
(else node)))))
(cond
((fix? node)
(map queue-push! (fix-defs node))
(let f ((labels (list)))
(if (queue-empty?)
(make-fix labels (fix-body node))
(let* ((node (queue-pop!)))
(f (cons (make-lambda
(lambda-name node)
(lambda-args node)
(flatten-node (lambda-body node))
'())
labels))))))
(else (make-fix (list) node)))))
(define (selection-convert-lambda node mod)
(define (start-new-block expr pred-block)
;; process the code path referenced by `expr' and return a label to the start block of the newly created subtree
(let* ((block (tree-make-block (gensym) '() '() '() '() (tree-block-function pred-block))))
(tree-block-pred-set! block pred-block)
(tree-block-add-succ! pred-block block)
(walk-node expr block)
(tree-make-label (tree-block-name block))))
(define (convert-atom x)
(cond
((constant? x)
(tree-make-constant 'i32 (constant-value x)))
((variable? x)
(tree-make-temp (variable-name x)))
((label? x)
(tree-make-label (label-name x)))
(else
(assert-not-reached))))
(define *tree-boolean-shift* (tree-constant-get 'i8 (immediate-rep *boolean-shift*)))
(define *tree-boolean-tag* (tree-constant-get 'i8 (immediate-rep *boolean-tag*)))
(define (convert-prim-binop op e1 e2 block)
(case op
((fx+)
(let* ((e1 (convert-atom e1))
(e2 (convert-atom e2))
(t1 (tree-build-add 'i64 e1 e2)))
t1))
((fx-)
(let* ((e1 (convert-atom e1))
(e2 (convert-atom e2))
(t1 (tree-build-sub 'i64 e1 e2)))
t1))
((fx*)
(let* ((e1 (convert-atom e1))
(e2 (convert-atom e2))
(t1 (tree-build-mul 'i64 e1 e2)))
t1))
((fx<=)
(let* ((e1 (convert-atom e1))
(e2 (convert-atom e2))
(t1 (tree-build-cmp 'le e1 e2))
(t2 (tree-build-shl 'i64 *tree-boolean-shift* t1))
(t3 (tree-build-ior 'i64 *tree-boolean-tag* t2)))
t3))
((fx>=)
(let* ((e1 (convert-atom e1))
(e2 (convert-atom e2))
(t1 (tree-build-cmp 'ge e1 e2))
(t2 (tree-build-shl 'i64 *tree-boolean-shift* t1))
(t3 (tree-build-ior 'i64 *tree-boolean-tag* t2)))
t3))
((fx<)
(let* ((e1 (convert-atom e1))
(e2 (convert-atom e2))
(t1 (tree-build-cmp 'lt e1 e2))
(t2 (tree-build-shl 'i64 *tree-boolean-shift* t1))
(t3 (tree-build-ior 'i64 *tree-boolean-tag* t2)))
t3))
((fx>)
(let* ((e1 (convert-atom e1))
(e2 (convert-atom e2))
(t1 (tree-build-cmp 'gt e1 e2))
(t2 (tree-build-shl 'i64 *tree-boolean-shift* t1))
(t3 (tree-build-ior 'i64 *tree-boolean-tag* t2)))
t3))
((fx=)
(let* ((e1 (convert-atom e1))
(e2 (convert-atom e2))
(t1 (tree-build-cmp 'eq e1 e2))
(t2 (tree-build-shl 'i64 *tree-boolean-shift* t1))
(t3 (tree-build-ior 'i64 *tree-boolean-tag* t2)))
t3))
(else (assert-not-reached))))
(define (emit-stores block values base)
(let f ((values values) (i 0))
(match values
(() '())
((v . v*)
(tree-block-add-statement! block
(cond
((tree-constant? v)
(tree-build-store 'i64 v (tree-build-add 'i32 base (tree-constant-get 'i32 (* 8 i)))))
((tree-temp? v)
(tree-build-store 'i64
v (tree-build-add 'i32 base (tree-constant-get 'i32 (* 8 i)))))
((tree-label? v)
(tree-build-store 'i64
(tree-build-load 'ptr64 v) (tree-build-add 'i32 base (tree-constant-get 'i32 (* 8 i)))))
(else (assert-not-reached))))
(f v* (+ i 1))))))
(define (walk-node node block)
(struct-case node
((select index record name cexp)
(let* ((record (convert-atom record))
(t1 (tree-build-load 'i64 (tree-build-add 'i32 record (tree-constant-get 'i32 (* 8 index)))))
(t2 (tree-build-assign (variable-name name) t1)))
(tree-block-add-statement! block t2)
(walk-node cexp block)))
((record values name cexp)
(let* ((heap-ptr (gensym 't))
(t1 (tree-build-assign heap-ptr (tree-build-load 'i64 (tree-make-label 'heap_ptr))))
(t2 (tree-build-assign (variable-name name) (tree-make-temp heap-ptr)))
(t3 (tree-build-store 'i64
(tree-build-add 'i64
(tree-make-temp heap-ptr)
(tree-constant-get 'i32 (* 8 (length values))))
(tree-make-label 'heap_ptr))))
(tree-block-add-statement! block t1)
(tree-block-add-statement! block t2)
(tree-block-add-statement! block t3)
(emit-stores block (map (lambda (v) (convert-atom v)) values) (convert-atom name))
(walk-node cexp block)))
((app name args)
;; remember to support label targets in future
(let* ((target (convert-atom name))
(args (map (lambda (arg)
(convert-atom arg))
args))
(len (length args))
(t0 (tree-build-call 'tail target args)))
(tree-block-add-statement! block t0)
'()))
((nil) '())
((if test conseq altern)
(let* ((test (convert-atom test))
(block1 (start-new-block conseq block))
(block2 (start-new-block altern block))
(t0 (tree-build-cmp 'eq test (tree-constant-get 'i64 *false-value*)))
(t1 (tree-build-brc t0 block1 block2)))
(tree-block-add-statement! block t1)
'()))
((prim name args result cexp)
(let ((name (variable-name name))
(result (variable-name result)))
(case name
((fx+ fx- fx* fx<= fx>= fx< fx> fx=)
(let* ((t0 (convert-prim-binop name (first args) (second args) block))
(t1 (tree-build-assign result t0)))
(tree-block-add-statement! block t1)
(walk-node cexp block)))
((return)
(let* ((e1 (convert-atom (first args)))
(t0 (tree-build-return e1)))
(tree-block-add-statement! block t0)))
(else (assert-not-reached)))))))
(struct-case node
((lambda name args body)
(let* ((new-args (map (lambda (arg)
(tree-make-temp arg))
args))
(fun (tree-make-function name new-args '() mod))
(entry (tree-make-block name '() '() '() '() fun)))
(tree-function-entry-set! fun entry)
;; walk the lambda body
(walk-node body entry)
fun))))
(define (tree-convert node)
(struct-case node
((fix defs body)
(let* ((mod (tree-make-module))
(defs (cons (make-lambda 'begin '() body '()) defs)))
;; convert the definitions into function bodies
(for-each (lambda (def)
(tree-module-add-function! mod (selection-convert-lambda def mod)))
defs)
mod
))))
(define (select-instructions mod)
(struct-case mod
((tree-module functions)
(let* ((mc-mod (mc-make-module))
(cxts (map (lambda (fun)
(select-function mc-mod fun))
functions)))
(arch-generate-bridge-context mc-mod)
mc-mod))
(else (assert-not-reached))))
(define (select-function mc-mod fun)
(define (walk-block block mcxt mblk)
(let ((succ (map (lambda (succ)
(walk-block
succ
mcxt
(mc-make-block mcxt (tree-block-name succ))))
(tree-block-succ block))))
(mc-block-succ-set! mblk succ)
(tree-for-each-statement (lambda (stm)
(arch-emit-statement mblk stm))
block)
mblk))
(struct-case fun
((tree-function name params entry module)
(let* ((mc-cxt (mc-make-context name (map (lambda (p) (tree-temp-name p)) params) mc-mod)))
(walk-block entry mc-cxt (mc-context-start mc-cxt))
mc-cxt))
(else (assert-not-reached))))
(define (immediate-rep x)
(cond
((integer? x)
(bitwise-ior
(arithmetic-shift x *fixnum-shift*)
*fixnum-tag*))
((boolean? x)
(bitwise-ior
(arithmetic-shift (if x 1 0) *boolean-shift*)
*boolean-tag*))
((null? x)
*null-value*)
(else (error 'immediate-rep "type not recognized"))))
(define *fixnum-shift* 2)
(define *fixnum-mask* #x3)
(define *fixnum-tag* #x0)
(define *boolean-shift* 3)
(define *boolean-mask* #x7)
(define *boolean-tag* #x3)
(define *null-value* #x1)
(define *false-value* (immediate-rep #f))
(define *true-value* (immediate-rep #t))