-
Notifications
You must be signed in to change notification settings - Fork 4
/
VIO_VI_learnLoopClosure.m
332 lines (262 loc) · 9.96 KB
/
VIO_VI_learnLoopClosure.m
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
clear;
close all;
disp('===========================');
addpath('libviso2');
addpath('utils');
addpath('learning');
addpath('groundtruth/');
addpath('~/Dropbox/PhD/Code/MATLAB/matlab_rosbag-0.4-mac64/');
rosBagFileName = '/Volumes/STARSExFAT/Pioneer-VI/2015-02-25-16-56-01.bag';
%Set up topics
viRightCamTopic = '/right/image_rect';
viLeftCamTopic = '/left/image_rect';
imuTopic = '/imu0';
%Load the bag
bag = ros.Bag.load(rosBagFileName);
bag.info()
bagImageRightVIData = bag.readAll({viRightCamTopic});
bagImageLeftVIData = bag.readAll({viLeftCamTopic});
%right
viLeftcalib = bag.readAll({'/cam0/camera_info'});
%left
viRightcalib = bag.readAll({'/cam1/camera_info'});
bagImuData = bag.readAll({imuTopic});
viImageSize = [752 480];
data = load('datasets/2015-01-28-16-11-17_1loop.mat');
param.f = data.fu;
param.cu = data.cu;
param.cv = data.cv;
param.base = data.b;
first_frame = 1;
calibParams.c_u = data.cu;
calibParams.c_v = data.cv;
calibParams.f_u = data.fu;
calibParams.f_v = data.fv;
calibParams.b = data.b;
last_frame = length(bagImageRightVIData)-5;
%Set up IMU to Cam transform
p_ci_i = [0.0602131703928; -0.00145860604554; -0.0465617957282];
R_ic = rotmat_from_quat([0.999996930467 -5.44616859609e-05 0.00246256274859 -0.000268097157994]');
R_ci = R_ic';
T_camimu = [R_ci -R_ci*p_ci_i; 0 0 0 1];
%%
% demonstrates sparse scene flow (quad matching = 2 consecutive stereo pairs)
% matching parameters
param.nms_n = 3; % non-max-suppression: min. distance between maxima (in pixels)
param.nms_tau = 50; % non-max-suppression: interest point peakiness threshold
param.match_binsize = 50; % matching bin width/height (affects efficiency only)
param.match_radius = 200; % matching radius (du/dv in pixels)
param.match_disp_tolerance = 2; % du tolerance for stereo matches (in pixels)
param.outlier_disp_tolerance = 5; % outlier removal: disparity tolerance (in pixels)
param.outlier_flow_tolerance = 5; % outlier removal: flow tolerance (in pixels)
param.multi_stage = 1; % 0=disabled,1=multistage matching (denser and faster)
param.half_resolution = 1; % 0=disabled,1=match at half resolution, refine at full resolution
param.refinement = 1; % refinement (0=none,1=pixel,2=subpixel)
%% Setup
%% Setup
addpath('settings');
addpath('utils');
addpath('learning');
R = 25*eye(4);
optParams = {};
optParams.RANSACCostThresh = 1e-2;
optParams.OutlierThresh = 1e-4;
optParams.maxProbeWeight = 100;
trialType = 1;
switch trialType
case 1
useWeights = false;
optParams.RANSACMaxIterations = round(log(1-0.99)/log(1-(1-0.5)^3));
caseString = 'nominal';
case 2
useWeights = false;
optParams.RANSACMaxIterations = round(log(1-0.9999)/log(1-(1-0.5)^3));
caseString = 'aggressive';
case 3
useWeights = true;
caseString = 'probe';
end
optParams.maxGNIter = 10;
optParams.lineLambda = 0.75;
optParams.LMlambda = 1e-5;
optParams
caseString
%% Extract IMU timestamps
imuData = NaN(6, length(bagImuData));
imuDataTimeStamps = NaN(1, length(bagImuData));
for imu_i=1:length(bagImuData)
imuDataTimeStamps(imu_i) = bagImuData{imu_i}.header.stamp.time;
imuData(:, imu_i) = [bagImuData{imu_i}.linear_acceleration; bagImuData{imu_i}.angular_velocity];
end
%%
%create figure
figure('Color',[1 1 1]);
ha1 = axes('Position',[0.05,0.7,0.9,0.25]);
axis off;
ha2 = axes('Position',[0.05,0.05,0.9,0.6]);
axis equal, grid on, hold on;
%% Which frames do we want to use
frameList = first_frame+1:1:last_frame;
%% Extract camera times
camTimeStamps = NaN(1, length([1 frameList]));
k = 1;
for cam_i=[1 frameList]
camTimeStamps(k) = bagImageLeftVIData{cam_i}.header.stamp.time;
k = k + 1;
end
%%
repeatIter = 10;
meanRMSEHist = [];
learnedPredSpace = {};
learnedPredSpace.predVectors = [];
learnedPredSpace.weights = [];
p_wcam_hist = [];
for repeat_i = 1:repeatIter
rng('shuffle');
usedPredVectors = [];
% init matcher
matcherMex('init',param);
% push back first images
I1prev = uint8(reshape(bagImageLeftVIData{first_frame}.data, viImageSize(1), viImageSize(2))');
I2prev = uint8(reshape(bagImageRightVIData{first_frame}.data, viImageSize(1), viImageSize(2))');
I1prev = I1prev(1:478, :);
I2prev = I2prev(1:478, :);
matcherMex('push',I1prev,I2prev);
previousViTime = bagImageLeftVIData{first_frame}.header.stamp.time;
xInit.p = zeros(3,1);
xInit.v = zeros(3,1);
xInit.b_g = zeros(3,1);
xInit.b_a = zeros(3,1);
xInit.q = [1; zeros(3,1)];
xState = xInit;
k =1;
T_wcam = eye(4);
T_wcam_hist = T_wcam;
p_wcam_hist(:, 1, repeat_i) = zeros(3,1);
for frame=frameList
% read current images
I1 = uint8(reshape(bagImageLeftVIData{frame}.data, viImageSize(1), viImageSize(2))');
I2 = uint8(reshape(bagImageRightVIData{frame}.data, viImageSize(1), viImageSize(2))');
I1 = I1(1:478, :);
I2 = I2(1:478, :);
%IMU data
currentViTime = bagImageLeftVIData{frame}.header.stamp.time;
imuMask = imuDataTimeStamps >= previousViTime & imuDataTimeStamps < currentViTime;
imuDataWindowTimeStamps = imuDataTimeStamps(imuMask);
previousViTime = currentViTime;
imuDataWindow = imuData(:, imuMask);
xPrevState = xState;
for imusub_i = 2:size(imuDataWindow,2)
dt = imuDataWindowTimeStamps(imusub_i) - imuDataWindowTimeStamps(imusub_i-1);
[xState] = integrateIMU(xState, imuDataWindow(1:3, imusub_i-1), imuDataWindow(4:6, imusub_i-1), dt, zeros(3,1));
end
C_21_imu_est = rotmat_from_quat(xState.q)'*rotmat_from_quat(xPrevState.q);
C_21_est = T_camimu(1:3,1:3)*C_21_imu_est*T_camimu(1:3,1:3)';
matcherMex('push',I1,I2);
% match images
matcherMex('match',2);
p_matched = matcherMex('get_matches',2);
%Triangulate points and prune any at Infinity
numFts = 100;
if size(p_matched,2) > numFts
selectIdx = randperm(size(p_matched,2), numFts);
else
selectIdx = 1:size(p_matched,2);
end
if size(p_matched,2) < 30
T_21_opt = eye(4);
else
p_matched = p_matched(:,selectIdx);
[p_f1_1, p_f2_2] = triangulateAllPointsDirect(p_matched, calibParams);
pruneId = isinf(p_f1_1(1,:)) | isinf(p_f1_1(2,:)) | isinf(p_f1_1(3,:)) | isinf(p_f2_2(1,:)) | isinf(p_f2_2(2,:)) | isinf(p_f2_2(3,:));
p_f1_1 = p_f1_1(:, ~pruneId);
p_f2_2 = p_f2_2(:, ~pruneId);
%Select a subset
%selectIdx = randperm(size(p_f1_1,2), 5);
numLm = size(p_f1_1,2);
skip = floor(numLm/repeatIter);
buckets = [1:skip:numLm - mod(numLm, skip); skip:skip:numLm];
selectIdx = buckets(1, repeat_i):buckets(2, repeat_i);
rng(42); randOrder = randperm(numLm,numLm);
selectIdx = randOrder(selectIdx);
p_f1_1 = p_f1_1(:, selectIdx);
p_f2_2 = p_f2_2(:, selectIdx);
p_matched = p_matched(:, selectIdx);
inliers = 1:size(p_f1_1,2);
%Find inliers based on rotation matrix from IMU
%[p_f1_1, p_f2_2, T_21_est, inliers] = findInliersRot(p_f1_1, p_f2_2, T_21_cam(1:3,1:3), optParams);
[predVectors] = computePredVectors( p_matched(1:2,inliers), I1, I1prev, imuDataWindow(:, end));
%usedPredVectors(:,end+1:end+size(predVectors, 2)) = predVectors;
%fprintf('Tracking %d features.', size(p_f1_1,2));
%Calculate initial guess using scalar weights, then use matrix weighted
%non linear optimization
R_1 = repmat(R, [1 1 size(p_f1_1, 2)]);
R_2 = R_1;
T_21_est = scalarWeightedPointCloudAlignment(p_f1_1, p_f2_2,C_21_est);
T_21_opt = matrixWeightedPointCloudAlignment(p_f1_1, p_f2_2, R_1, R_2, T_21_est, calibParams, optParams);
%Prune any vectors with 0 entries
pruneWeightsIdx = predVectors(1,:) == 0 | predVectors(2,:) == 0 | predVectors(3,:) == 0 | predVectors(4,:) == 0 | predVectors(5,:) == 0 | predVectors(6,:) == 0 | predVectors(7,:) == 0;
predVectors = predVectors(:,~pruneWeightsIdx);
usedPredVectors(:,end+1:end+size(predVectors, 2)) = predVectors;
end %if size(p_matched,2)
T_wcam = T_wcam*inv(T_21_opt);
T_wcam_hist(:,:,end+1) = T_wcam;
p_wcam_hist(:, frame, repeat_i) = T_wcam(1:3,4);
% update trajectory and plot
% axes(ha2);
% plot(T_wcam(1,4),T_wcam(3,4),'g*');
% hold on;
% grid on;
% drawnow();
I1prev = I1;
I2prev = I2;
k = k + 1;
fprintf('k:%d, repeat_i: %d \n',k,repeat_i);
end
% close matcher
matcherMex('close');
%Calculate error
translation = NaN(3, size(T_wcam_hist, 3));
for i = 1:size(T_wcam_hist, 3)
T_wcam = T_wcam_hist(:, :, i);
translation(:,i) = T_wcam(1:3, 4);
end
pathGoodness = norm(translation(:, end))
learnedPredSpace.predVectors = [learnedPredSpace.predVectors usedPredVectors];
learnedPredSpace.weights = [learnedPredSpace.weights pathGoodness*ones(1, size(usedPredVectors,2))];
end
learnedPredSpace
%% Save
f = strsplit(rosBagFileName, '/');
f = strsplit(char(f(end)), '.');
fileName = ['learnedProbeModels/' char(f(1)) '_learnedPredSpaceIter' int2str(repeatIter) '.mat'];
save(fileName, 'learnedPredSpace');
%% Plot Trajectories
close all
load('learnedProbeModels/2015-02-25-16-56-01_learnedPredSpaceIter10.mat')
figure
for p_i = 1:size(p_wcam_hist,3)
plot(p_wcam_hist(1,:,p_i),p_wcam_hist(3,:,p_i), '-b', 'LineWidth', 0.25);
hold on;
end
%plot(rtk_data.xyz(:,1),p_wcam_w_gt(3,:), '-r', 'LineWidth', 2);
f = strsplit(rosBagFileName, '/');
f = strsplit(char(f(end)), '.');
fileName = char(f(1));
title(sprintf('Training Runs \n %s', fileName), 'Interpreter', 'none')
xlabel('x [m]')
ylabel('z [m]')
%legend('Training Runs', 'Ground Truth')
grid on;
saveas(gcf,sprintf('plots/%s_training.fig', fileName));
save(sprintf('plots/%s_paths.mat', fileName), 'p_wcam_hist');
%%
% plot(translation(1,:), translation(3,:),'-g', 'LineWidth', 2);
% grid on;
% hold on;
%plot(rtk_registered(1,:), rtk_registered(3,:),'-k', 'LineWidth', 2);
%title(fileName);
%xlabel('Right [m]');
%ylabel('Forward [m]');
%legend('VIO', 'RTK GPS', 'Location','NorthWest');
%saveas(gcf, ['groundtruth/' fileName '_VIOandGPS.fig']);