-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathmvcnn.py
78 lines (63 loc) · 2.53 KB
/
mvcnn.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
import torch
import torch.nn as nn
import torch.utils.model_zoo as model_zoo
__all__ = ['MVCNN', 'mvcnn']
model_urls = {
'alexnet': 'https://download.pytorch.org/models/alexnet-owt-4df8aa71.pth',
}
class MVCNN(nn.Module):
def __init__(self, num_classes=1000):
super(MVCNN, self).__init__()
self.features = nn.Sequential(
nn.Conv2d(3, 64, kernel_size=11, stride=4, padding=2),
nn.ReLU(inplace=True),
nn.MaxPool2d(kernel_size=3, stride=2),
nn.Conv2d(64, 192, kernel_size=5, padding=2),
nn.ReLU(inplace=True),
nn.MaxPool2d(kernel_size=3, stride=2),
nn.Conv2d(192, 384, kernel_size=3, padding=1),
nn.ReLU(inplace=True),
nn.Conv2d(384, 256, kernel_size=3, padding=1),
nn.ReLU(inplace=True),
nn.Conv2d(256, 256, kernel_size=3, padding=1),
nn.ReLU(inplace=True),
nn.MaxPool2d(kernel_size=3, stride=2),
)
self.classifier = nn.Sequential(
nn.Dropout(),
nn.Linear(256 * 6 * 6, 4096),
nn.ReLU(inplace=True),
nn.Dropout(),
nn.Linear(4096, 4096),
nn.ReLU(inplace=True),
nn.Linear(4096, num_classes),
)
def forward(self, x):
x = x.transpose(0, 1)
view_pool = []
for v in x:
v = self.features(v) #(batch x 256 x 6 x6)
v = v.view(v.size(0), 256 * 6 * 6) #(batch x 9216)
view_pool.append(v)
pooled_view = view_pool[0]
for i in range(1, len(view_pool)):
pooled_view = torch.max(pooled_view, view_pool[i])
pooled_view = self.classifier(pooled_view)
return pooled_view
def mvcnn(pretrained=False, **kwargs):
r"""MVCNN model architecture from the
`"Multi-view Convolutional..." <hhttp://vis-www.cs.umass.edu/mvcnn/docs/su15mvcnn.pdf>`_ paper.
Args:
pretrained (bool): If True, returns a model pre-trained on ImageNet
"""
model = MVCNN(**kwargs)
if pretrained:
pretrained_dict = model_zoo.load_url(model_urls['alexnet'])
model_dict = model.state_dict()
# 1. filter out unnecessary keys
pretrained_dict = {k: v for k, v in pretrained_dict.items() if k in model_dict and v.shape == model_dict[k].shape}
# 2. overwrite entries in the existing state dict
model_dict.update(pretrained_dict)
# 3. load the new state dict
model.load_state_dict(model_dict)
return model