Skip to content

Latest commit

 

History

History
105 lines (75 loc) · 2.59 KB

unstructured.mdx

File metadata and controls

105 lines (75 loc) · 2.59 KB
title
Unstructured

Unstructured extracts complex data from difficult-to-use formats like HTML, PDF, CSV, and more. Check out Unstructured - Product for more information about their product and pricing.

Install RAG Chat SDK

Install Bun if you haven't.

Initialize the project and install the required packages:

npm init es6
npm install dotenv
npm install @upstash/rag-chat
npm i --save-dev @types/bun  

Setup Upstash Redis

Create a Redis database using Upstash Console or Upstash CLI and copy the UPSTASH_REDIS_REST_URL and UPSTASH_REDIS_REST_TOKEN into your .env file.

UPSTASH_REDIS_REST_URL=<YOUR_URL>
UPSTASH_REDIS_REST_TOKEN=<YOUR_TOKEN>

Setup Upstash Vector

Create a Vector index using Upstash Console or Upstash CLI and copy the UPSTASH_VECTOR_REST_URL and UPSTASH_VECTOR_REST_TOKEN into your .env file.

UPSTASH_VECTOR_REST_URL=<YOUR_URL>
UPSTASH_VECTOR_REST_TOKEN=<YOUR_TOKEN>

Setup QStash LLM

Navigate to QStash Console and copy the QSTASH_TOKEN into your .env file.

QSTASH_TOKEN=<YOUR_TOKEN>

Setup Unstructured

Create an Unstructured account and get an API key from Unstructed -> API Keys. Set your Unstructed API key as an environment variable:

UNSTRUCTURED_IO_KEY=<YOUR_API_KEY>

Setup the Project

Initialize RAGChat:

import { RAGChat, upstash } from "@upstash/rag-chat";
import "dotenv/config";

const ragChat = new RAGChat({
  model: upstash("meta-llama/Meta-Llama-3-8B-Instruct"),
});

Fetch a webpage and save it to a file:

const fileSource = "./hackernews.html";
const response = await fetch("https://news.ycombinator.com/");
await Bun.write(fileSource, await response.text());

Add context to the RAG Chat with the Unstructured processor:

await ragChat.context.add({
  options: {
    namespace: "unstructured-upstash",
  },
  fileSource,
  processor: {
    name: "unstructured",
    options: { apiKey: process.env.UNSTRUCTURED_IO_KEY },
  },
});

Chat with the RAG Chat:

const result = await ragChat.chat("What is the second story on hacker news?", {
  streaming: false,
  namespace: "unstructured-upstash",
});

Run

Run the project:

bun run index.ts