title |
---|
Mistral AI |
Mistral AI is a language model provider. Check out Mistral AI Technology for more information about their models and pricing.
Initialize the project and install the required packages:
npm init es6
npm install dotenv
npm install @upstash/rag-chat
Create a Redis database using Upstash Console or Upstash CLI and copy the UPSTASH_REDIS_REST_URL
and UPSTASH_REDIS_REST_TOKEN
into your .env
file.
UPSTASH_REDIS_REST_URL=<YOUR_URL>
UPSTASH_REDIS_REST_TOKEN=<YOUR_TOKEN>
Create a Vector index using Upstash Console or Upstash CLI and copy the UPSTASH_VECTOR_REST_URL
and UPSTASH_VECTOR_REST_TOKEN
into your .env
file.
UPSTASH_VECTOR_REST_URL=<YOUR_URL>
UPSTASH_VECTOR_REST_TOKEN=<YOUR_TOKEN>
Create a Mistral AI account and get an API key from Mistral AI Console -> La Plateforme -> API Keys. Set your Mistral AI API key as an environment variable:
MISTRAL_AI_KEY=<YOUR_API_KEY>
Initialize RAGChat with the Mistral AI model:
import { RAGChat, mistralai } from "@upstash/rag-chat";
import "dotenv/config";
export const ragChat = new RAGChat({
model: mistralai("mistral-small-latest",{apiKey: process.env.MISTRAL_AI_KEY}),
});
Add context to the RAG Chat:
await ragChat.context.add("The speed of light is approximately 299,792,458 meters per second.");
Chat with the RAG Chat:
const response = await ragChat.chat("What is the speed of light?");
console.log(response);
Run the project:
npx tsx index.ts