forked from lsoffi/egm_tnp_analysis
-
Notifications
You must be signed in to change notification settings - Fork 3
/
Copy pathtnpEGM_fitter.py
228 lines (185 loc) · 9.03 KB
/
tnpEGM_fitter.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
### python specific import
import argparse
import os
import sys
import pickle
import shutil
parser = argparse.ArgumentParser(description='tnp EGM fitter')
parser.add_argument('--checkBins' , action='store_true' , help = 'check bining definition')
parser.add_argument('--createBins' , action='store_true' , help = 'create bining definition')
parser.add_argument('--createHists', action='store_true' , help = 'create histograms')
parser.add_argument('--sample' , default='all' , help = 'create histograms (per sample, expert only)')
parser.add_argument('--altSig' , action='store_true' , help = 'alternate signal model fit')
parser.add_argument('--altBkg' , action='store_true' , help = 'alternate background model fit')
parser.add_argument('--doFit' , action='store_true' , help = 'fit sample (sample should be defined in settings.py)')
parser.add_argument('--mcSig' , action='store_true' , help = 'fit MC nom [to init fit parama]')
parser.add_argument('--doPlot' , action='store_true' , help = 'plotting')
parser.add_argument('--sumUp' , action='store_true' , help = 'sum up efficiencies')
parser.add_argument('--iBin' , dest = 'binNumber' , type = int, default=-1, help='bin number (to refit individual bin)')
parser.add_argument('--flag' , default = None , help ='WP to test')
parser.add_argument('settings' , default = None , help = 'setting file [mandatory]')
args = parser.parse_args()
print '===> settings %s <===' % args.settings
importSetting = 'import %s as tnpConf' % args.settings.replace('/','.').split('.py')[0]
print importSetting
exec(importSetting)
### tnp library
import libPython.binUtils as tnpBiner
import libPython.rootUtils as tnpRoot
if args.flag is None:
print '[tnpEGM_fitter] flag is MANDATORY, this is the working point as defined in the settings.py'
sys.exit(0)
if not args.flag in tnpConf.flags.keys() :
print '[tnpEGM_fitter] flag %s not found in flags definitions' % args.flag
print ' --> define in settings first'
print ' In settings I found flags: '
print tnpConf.flags.keys()
sys.exit(1)
outputDirectory = '%s/%s/' % (tnpConf.baseOutDir,args.flag)
print '===> Output directory: '
print outputDirectory
####################################################################
##### Create (check) Bins
####################################################################
if args.checkBins:
tnpBins = tnpBiner.createBins(tnpConf.biningDef,tnpConf.cutBase)
tnpBiner.tuneCuts( tnpBins, tnpConf.additionalCuts )
for ib in range(len(tnpBins['bins'])):
print tnpBins['bins'][ib]['name']
print ' - cut: ',tnpBins['bins'][ib]['cut']
sys.exit(0)
if args.createBins:
if os.path.exists( outputDirectory ):
shutil.rmtree( outputDirectory )
os.makedirs( outputDirectory )
tnpBins = tnpBiner.createBins(tnpConf.biningDef,tnpConf.cutBase)
tnpBiner.tuneCuts( tnpBins, tnpConf.additionalCuts )
pickle.dump( tnpBins, open( '%s/bining.pkl'%(outputDirectory),'wb') )
print 'created dir: %s ' % outputDirectory
print 'bining created successfully... '
print 'Note than any additional call to createBins will overwrite directory %s' % outputDirectory
sys.exit(0)
tnpBins = pickle.load( open( '%s/bining.pkl'%(outputDirectory),'rb') )
####################################################################
##### Create Histograms
####################################################################
for s in tnpConf.samplesDef.keys():
sample = tnpConf.samplesDef[s]
if sample is None: continue
setattr( sample, 'tree' ,'Events' ) # %s/tnpEGM_fitter.py:
setattr( sample, 'histFile' , '%s/%s_%s.root' % ( outputDirectory , sample.name, args.flag ) )
if args.createHists:
import libPython.histUtils as tnpHist
for sampleType in tnpConf.samplesDef.keys():
sample = tnpConf.samplesDef[sampleType]
if sample is None : continue
if sampleType == args.sample or args.sample == 'all' :
print 'creating histogram for sample '
sample.dump()
var = { 'name' : 'TnP_mass', 'nbins' : 80, 'min' : 50, 'max': 130 }
if sample.mcTruth:
var = { 'name' : 'TnP_mass', 'nbins' : 80, 'min' : 50, 'max': 130 }
tnpHist.makePassFailHistograms( sample, tnpConf.flags[args.flag], tnpBins, var )
sys.exit(0)
####################################################################
##### Actual Fitter
####################################################################
sampleToFit = tnpConf.samplesDef['data']
if sampleToFit is None:
print '[tnpEGM_fitter, prelim checks]: sample (data or MC) not available... check your settings'
sys.exit(1)
sampleMC = tnpConf.samplesDef['mcNom']
if sampleMC is None:
print '[tnpEGM_fitter, prelim checks]: MC sample not available... check your settings'
sys.exit(1)
for s in tnpConf.samplesDef.keys():
sample = tnpConf.samplesDef[s]
if sample is None: continue
setattr( sample, 'mcRef' , sampleMC )
setattr( sample, 'nominalFit', '%s/%s_%s.nominalFit.root' % ( outputDirectory , sample.name, args.flag ) )
setattr( sample, 'altSigFit' , '%s/%s_%s.altSigFit.root' % ( outputDirectory , sample.name, args.flag ) )
setattr( sample, 'altBkgFit' , '%s/%s_%s.altBkgFit.root' % ( outputDirectory , sample.name, args.flag ) )
### change the sample to fit is mc fit
if args.mcSig :
sampleToFit = tnpConf.samplesDef['mcNom']
if args.doFit:
sampleToFit.dump()
for ib in range(len(tnpBins['bins'])):
if (args.binNumber >= 0 and ib == args.binNumber) or args.binNumber < 0:
if args.altSig:
tnpRoot.histFitterAltSig( sampleToFit, tnpBins['bins'][ib], tnpConf.tnpParAltSigFit )
elif args.altBkg:
tnpRoot.histFitterAltBkg( sampleToFit, tnpBins['bins'][ib], tnpConf.tnpParAltBkgFit )
else:
tnpRoot.histFitterNominal( sampleToFit, tnpBins['bins'][ib], tnpConf.tnpParNomFit )
args.doPlot = True
####################################################################
##### dumping plots
####################################################################
if args.doPlot:
fileName = sampleToFit.nominalFit
fitType = 'nominalFit'
if args.altSig :
fileName = sampleToFit.altSigFit
fitType = 'altSigFit'
if args.altBkg :
fileName = sampleToFit.altBkgFit
fitType = 'altBkgFit'
plottingDir = '%s/plots/%s/%s' % (outputDirectory,sampleToFit.name,fitType)
if not os.path.exists( plottingDir ):
os.makedirs( plottingDir )
shutil.copy('etc/inputs/index.php.listPlots','%s/index.php' % plottingDir)
for ib in range(len(tnpBins['bins'])):
if (args.binNumber >= 0 and ib == args.binNumber) or args.binNumber < 0:
tnpRoot.histPlotter( fileName, tnpBins['bins'][ib], plottingDir )
print ' ===> Plots saved in <======='
# print 'localhost/%s/' % plottingDir
####################################################################
##### dumping egamma txt file
####################################################################
if args.sumUp:
sampleToFit.dump()
info = {
'data' : sampleToFit.histFile,
'dataNominal' : sampleToFit.nominalFit,
'dataAltSig' : sampleToFit.altSigFit ,
'dataAltBkg' : sampleToFit.altBkgFit ,
'mcNominal' : sampleToFit.mcRef.histFile,
'mcAlt' : None,
'tagSel' : None
}
if not tnpConf.samplesDef['mcAlt' ] is None:
info['mcAlt' ] = tnpConf.samplesDef['mcAlt' ].histFile
if not tnpConf.samplesDef['tagSel'] is None:
info['tagSel' ] = tnpConf.samplesDef['tagSel'].histFile
effis = None
effFileName ='%s/egammaEffi.txt' % outputDirectory
fOut = open( effFileName,'w')
for ib in range(len(tnpBins['bins'])):
effis = tnpRoot.getAllEffi( info, tnpBins['bins'][ib] )
### formatting assuming 2D bining -- to be fixed
v1Range = tnpBins['bins'][ib]['title'].split(';')[1].split('<')
v2Range = tnpBins['bins'][ib]['title'].split(';')[2].split('<')
if ib == 0 :
astr = '### var1 : %s' % v1Range[1]
print astr
fOut.write( astr + '\n' )
astr = '### var2 : %s' % v2Range[1]
print astr
fOut.write( astr + '\n' )
astr = '%+8.3f\t%+8.3f\t%+8.3f\t%+8.3f\t%5.3f\t%5.3f\t%5.3f\t%5.3f\t%5.3f\t%5.3f\t%5.3f\t%5.3f' % (
float(v1Range[0]), float(v1Range[2]),
float(v2Range[0]), float(v2Range[2]),
effis['dataNominal'][0],effis['dataNominal'][1],
effis['mcNominal' ][0],effis['mcNominal' ][1],
effis['dataAltBkg' ][0],
effis['dataAltSig' ][0],
effis['mcAlt' ][0],
effis['tagSel'][0],
)
print astr
fOut.write( astr + '\n' )
fOut.close()
print 'Effis saved in file : ', effFileName
import libPython.EGammaID_scaleFactors as egm_sf
egm_sf.doEGM_SFs(effFileName,sampleToFit.lumi)