-
Notifications
You must be signed in to change notification settings - Fork 2
/
Copy pathmain.jl
216 lines (204 loc) · 7.14 KB
/
main.jl
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
# TO RUN:
# include("main.jl")
#
# AUTHOR
# Dr. Umberto Saetti, Assistant Professor, Department of Aerospace Engineering,
# Auburn university
#
# DATE
# 1/3/2022
#
# DESCRIPTION
# Nonlinear simulation model of the rigid-body dynamics of an F-16
# aircraft. The simulation model is based on Refs 1 and 2. The trim,
# linearization routines, and overall architecture of the simulation
# follows the teachings of Dr. Joe Horn at Penn State. When using, please cite
# Ref. 3.
#
# REFERENCES
# 1) Stevens, B. L., Lewis, F. L., and Johnson E. N., “Aircraft Control
# and Simulation: Dynamics, Controls, Design, and Autonomous Systems,”
# Wiley, 3rd Edition, 2015.
# ISBN: 978-1-118-87098-3
# 2) Garza, F. R., and Morelli, E. A., "A Collection of Nonlinear Aircraft
# Simulations in MATLAB," NASA TM-2003-212145, 2003.
# 3) Saetti, U., and Horn, J. F., "Flight Simulation and Control using the Julia
# Language", AIAA Scitech Forum, San Diego, CA, Jan 3-7, 2022.
# DOI: https://arc.aiaa.org/doi/10.2514/6.2022-2354.
#
# STATES | NINDICES | DESCRIPTION
# _________________________________________________________________________
# V_T | 1 | airspeed [ft/s]
# alpha | 2 | angle of attach [rad]
# beta | 3 | sideslip [rad]
# phi theta psi | 4 5 6 | Euler angles [rad]
# p q r | 7 8 9 | angula rates [rad]
# x | 10 | north position [ft]
# y | 11 | east position [ft]
# z | 12 | altitude [ft]
# P_a | 13 | power [lb-ft^2/s]
#
# CONTROL INPUTS | INDICED | DESCRIPTION | RANGE
# _________________________________________________________________________
# delta_t | 1 | throttle [0-1] | (0, 1)
# delta_a | 2 | aileron [deg] | (-21.5, 21.5) deg
# delta_e | 3 | elevator [deg] | (-25, 25) deg
# delta_r | 4 | rudder [deg] | (-30, 30) deg
#
# -------------------------------------------------------------------------
# include packages
#using DifferentialEquations
using LinearAlgebra
using SparseArrays
using ControlSystems
using MAT
using Interpolations
using ApproxFun
using Printf
#ENV["MPLBACKEND"]="tkagg"
using Plots
using LaTeXStrings
using JLD
#using PyPlot
#using GR
@printf("\n J-F16 \n")
@printf("\n Author: Dr. Umberto Saetti\n")
@printf("\n-----------------------------------------------\n")
# include functions
include("atan2.jl")
include("linearize.jl")
include("trimmer.jl")
#include("finp_F16_loop.jl")
include("THRUST.jl")
include("DAMP.jl")
include("DNDR.jl")
include("DNDA.jl")
include("DLDR.jl")
include("DLDA.jl")
include("CN.jl")
include("CL.jl")
include("CM.jl")
include("CZ.jl")
include("CY.jl")
include("CX.jl")
include("RTAU.jl")
include("TGEAR.jl")
include("PDOT.jl")
include("ADC.jl")
include("fix.jl")
include("F16.jl")
include("rk4.jl")
include("finp.jl")
include("simulate.jl")
include("simulate_DI.jl")
include("F16_DI.jl")
# load F-16 constants
include("F16_constants.jl")
# ------------------------ TRIM FLIGHT DYNAMICS MODEL --------------------------
# set velocity [ft/s]
speed=600.0
# vertical flight path angle [deg]
gamma=0.0
# horizontal flight path angle [deg]
chi=0.0
# set initial altitude [ft]
alt=2000.0
# set initial North-South and East-West position [ft]
p_north=0.0
p_east=0.0
# turn rate [deg/s]
turnrate=0.0
# pull-up rate [deg/s]
pullup=0.0
# roll rate [deg/s]
rollrate=0.0
# initial guess for state and control vectors
phi_est=turnrate*D2R*speed/32.17
pndot=speed*cos(gamma*D2R)*cos(chi*D2R)
pedot=speed*cos(gamma*D2R)*sin(chi*D2R)
hdot=speed*sin(gamma*D2R)
x0=[speed; 0.0; 0.0; phi_est; 0; chi*D2R; 0.0; 0.0; 0.0; p_north; p_east; alt;
0.0]
u0=[0.2; 0; 0; 0]
targ_des=[0; 0; 0; rollrate*D2R; pullup*D2R; turnrate*D2R; 0; 0; 0; pndot;
pedot; hdot; 0; 0]
# trim aircraft
x0, u0, iter = trimmer(F16!,x0,u0,targ_des)
# linearize
A, Bmat, C, D = linearize(F16!,x0,u0)
# partition in longitudinal and lateral flight dynamics
Alon=A[[1,2,5,8],[1,2,5,8]]
Alat=A[[3,4,7,9],[3,4,7,9]]
# ----------------------------- SPECTRAL ANALYSIS ------------------------------
# eigenvalues
eigs=eigvals(A)
eigsLon=eigvals(Alon)
eigsLat=eigvals(Alat)
# store eigenvalues
save("eigs_J-SimpleHel.jld","eigs",eigs)
# plot eigenvalues
gr(size=(800,600))
plt=plot(real(eigs),imag(eigs),seriestype=:scatter,
label="", legendfontsize=12, legend=:topleft,
marker = (:circle, :royalblue, 6), markerstrokecolor = :royalblue)
xaxis!("Real",xguidefontsize=14)
yaxis!("Imag",yguidefontsize=14)
display(plt)
savefig(".\\Plots\\eigs_600fts.png")
savefig(".\\Plots\\eigs_600fts.svg")
# ------------------------------ TIME SIMULATION -------------------------------
# time step [s]
dt=0.01
# length of simulation [s]
Tsim=8
# run open-loop simulation
state_OL, time_OL = simulate(F16!,finp,Tsim,dt,x0,u0)
# number of dynamic inverse states
NDISTATES=9
# initial state vector of closed-loop simulation
x0_DI=[x0; 0.0; 0.0; 0.0; 0.0; 0.0; 0.0; u0[2]; u0[3]; u0[4]]
# run closed-loop simulation
state_CL, time_CL = simulate_DI(F16_DI!,finp,Tsim,dt,x0,u0)
# plot attitude
gr(size=(800,600))
i=4
p1=plot(time_OL,state_OL[i,:]*180/pi,label="Open Loop",legend=:bottomright, legendfontsize=12,line=(3, :royalblue, :solid))
plot!(time_OL,-state_CL[i,:]*180/pi,label="Closed Loop",legend=:bottomright, legendfontsize=12,line=(3, :brown3, :dash))
yaxis!("φ [deg]",yguidefontsize=14)
xlims!((0,8))
i=5
p2=plot(time_OL,state_OL[i,:]*180/pi,label="",line=(3, :royalblue, :solid))
plot!(time_OL,state_CL[i,:]*180/pi,label="",legend=:bottomright, legendfontsize=12,line=(3, :brown3, :dash))
yaxis!("θ [deg]",yguidefontsize=14)
xlims!((0,8))
i=6
p3=plot(time_OL,state_OL[i,:]*180/pi,label="",line=(3, :royalblue, :solid))
plot!(time_OL,-state_CL[i,:]*180/pi,label="",legend=:bottomright, legendfontsize=12,line=(3, :brown3, :dash))
xaxis!("Time [s]",xguidefontsize=14)
yaxis!("ψ [deg]",yguidefontsize=14)
xlims!((0,8))
p4=plot(p1, p2, p3, layout=(3,1), leftmargin=3Plots.mm)
display(p4)
savefig(".\\Plots\\att_F16.svg")
# plot angular rates
gr(size=(800,600))
i=7
p5=plot(time_OL,state_OL[i,:],label="",line=(3, :royalblue, :solid))
plot!(time_OL,-state_CL[i,:],label="",line=(3, :brown3, :dash))
yaxis!("p [rad/s]",yguidefontsize=14)
xlims!((0,8))
i=8
p6=plot(time_OL,state_OL[i,:],label="",line=(3, :royalblue, :solid))
plot!(time_OL,state_CL[i,:],label="",legend=:bottomright, legendfontsize=12,line=(3, :brown3, :dash))
yaxis!("q [rad/s]",yguidefontsize=14)
xlims!((0,8))
i=9
p7=plot(time_OL,state_OL[i,:],label="Open Loop",legend=:bottomright, legendfontsize=12,line=(3, :royalblue, :solid))
plot!(time_OL,-state_CL[i,:],label="Closed Loop",line=(3, :brown3, :dash))
xaxis!("Time [s]",xguidefontsize=14)
yaxis!("r [rad/s]",yguidefontsize=14)
xlims!((0,8))
p8=plot(p5, p6, p7, layout=(3,1), leftmargin=3Plots.mm)
display(p8)
savefig(".\\Plots\\ang_F16.svg")