diff --git a/export.py b/export.py index dfb1c06fb5e2..f3216a564290 100644 --- a/export.py +++ b/export.py @@ -449,6 +449,7 @@ def transform_fn(data_item): Quantization transform function. Extracts and preprocess input data from dataloader item for quantization. + Parameters: data_item: Tuple with data item produced by DataLoader during iteration Returns: diff --git a/models/yolov5femto.yaml b/models/yolov5femto.yaml new file mode 100644 index 000000000000..aba479134691 --- /dev/null +++ b/models/yolov5femto.yaml @@ -0,0 +1,49 @@ +# YOLOv5 🚀 by Ultralytics, GPL-3.0 license + +# Parameters +nc: 80 # number of classes +depth_multiple: 0.04 # model depth multiple +width_multiple: 0.03125 # layer channel multiple +anchors: + - [10, 13, 16, 30, 33, 23] # P3/8 + - [30, 61, 62, 45, 59, 119] # P4/16 + - [116, 90, 156, 198, 373, 326] # P5/32 + +# YOLOv5 v6.0 backbone +backbone: + # [from, number, module, args] + [ + [-1, 1, Conv, [64, 6, 2, 2]], # 0-P1/2 + [-1, 1, Conv, [128, 3, 2]], # 1-P2/4 + [-1, 3, C3, [128]], + [-1, 1, Conv, [256, 3, 2]], # 3-P3/8 + [-1, 6, C3, [256]], + [-1, 1, Conv, [512, 3, 2]], # 5-P4/16 + [-1, 9, C3, [512]], + [-1, 1, Conv, [1024, 3, 2]], # 7-P5/32 + [-1, 3, C3, [1024]], + [-1, 1, SPPF, [1024, 5]], # 9 + ] + +# YOLOv5 v6.0 head +head: [ + [-1, 1, Conv, [512, 1, 1]], + [-1, 1, nn.Upsample, [None, 2, "nearest"]], + [[-1, 6], 1, Concat, [1]], # cat backbone P4 + [-1, 3, C3, [512, False]], # 13 + + [-1, 1, Conv, [256, 1, 1]], + [-1, 1, nn.Upsample, [None, 2, "nearest"]], + [[-1, 4], 1, Concat, [1]], # cat backbone P3 + [-1, 3, C3, [256, False]], # 17 (P3/8-small) + + [-1, 1, Conv, [256, 3, 2]], + [[-1, 14], 1, Concat, [1]], # cat head P4 + [-1, 3, C3, [512, False]], # 20 (P4/16-medium) + + [-1, 1, Conv, [512, 3, 2]], + [[-1, 10], 1, Concat, [1]], # cat head P5 + [-1, 3, C3, [1024, False]], # 23 (P5/32-large) + + [[17, 20, 23], 1, Detect, [nc, anchors]], # Detect(P3, P4, P5) + ] diff --git a/models/yolov5micro.yaml b/models/yolov5micro.yaml new file mode 100644 index 000000000000..61aece32f6d8 --- /dev/null +++ b/models/yolov5micro.yaml @@ -0,0 +1,49 @@ +# YOLOv5 🚀 by Ultralytics, GPL-3.0 license + +# Parameters +nc: 80 # number of classes +depth_multiple: 0.16 # model depth multiple +width_multiple: 0.125 # layer channel multiple +anchors: + - [10, 13, 16, 30, 33, 23] # P3/8 + - [30, 61, 62, 45, 59, 119] # P4/16 + - [116, 90, 156, 198, 373, 326] # P5/32 + +# YOLOv5 v6.0 backbone +backbone: + # [from, number, module, args] + [ + [-1, 1, Conv, [64, 6, 2, 2]], # 0-P1/2 + [-1, 1, Conv, [128, 3, 2]], # 1-P2/4 + [-1, 3, C3, [128]], + [-1, 1, Conv, [256, 3, 2]], # 3-P3/8 + [-1, 6, C3, [256]], + [-1, 1, Conv, [512, 3, 2]], # 5-P4/16 + [-1, 9, C3, [512]], + [-1, 1, Conv, [1024, 3, 2]], # 7-P5/32 + [-1, 3, C3, [1024]], + [-1, 1, SPPF, [1024, 5]], # 9 + ] + +# YOLOv5 v6.0 head +head: [ + [-1, 1, Conv, [512, 1, 1]], + [-1, 1, nn.Upsample, [None, 2, "nearest"]], + [[-1, 6], 1, Concat, [1]], # cat backbone P4 + [-1, 3, C3, [512, False]], # 13 + + [-1, 1, Conv, [256, 1, 1]], + [-1, 1, nn.Upsample, [None, 2, "nearest"]], + [[-1, 4], 1, Concat, [1]], # cat backbone P3 + [-1, 3, C3, [256, False]], # 17 (P3/8-small) + + [-1, 1, Conv, [256, 3, 2]], + [[-1, 14], 1, Concat, [1]], # cat head P4 + [-1, 3, C3, [512, False]], # 20 (P4/16-medium) + + [-1, 1, Conv, [512, 3, 2]], + [[-1, 10], 1, Concat, [1]], # cat head P5 + [-1, 3, C3, [1024, False]], # 23 (P5/32-large) + + [[17, 20, 23], 1, Detect, [nc, anchors]], # Detect(P3, P4, P5) + ] diff --git a/models/yolov5pico.yaml b/models/yolov5pico.yaml new file mode 100644 index 000000000000..cfdcd788ee2a --- /dev/null +++ b/models/yolov5pico.yaml @@ -0,0 +1,49 @@ +# YOLOv5 🚀 by Ultralytics, GPL-3.0 license + +# Parameters +nc: 80 # number of classes +depth_multiple: 0.08 # model depth multiple +width_multiple: 0.0625 # layer channel multiple +anchors: + - [10, 13, 16, 30, 33, 23] # P3/8 + - [30, 61, 62, 45, 59, 119] # P4/16 + - [116, 90, 156, 198, 373, 326] # P5/32 + +# YOLOv5 v6.0 backbone +backbone: + # [from, number, module, args] + [ + [-1, 1, Conv, [64, 6, 2, 2]], # 0-P1/2 + [-1, 1, Conv, [128, 3, 2]], # 1-P2/4 + [-1, 3, C3, [128]], + [-1, 1, Conv, [256, 3, 2]], # 3-P3/8 + [-1, 6, C3, [256]], + [-1, 1, Conv, [512, 3, 2]], # 5-P4/16 + [-1, 9, C3, [512]], + [-1, 1, Conv, [1024, 3, 2]], # 7-P5/32 + [-1, 3, C3, [1024]], + [-1, 1, SPPF, [1024, 5]], # 9 + ] + +# YOLOv5 v6.0 head +head: [ + [-1, 1, Conv, [512, 1, 1]], + [-1, 1, nn.Upsample, [None, 2, "nearest"]], + [[-1, 6], 1, Concat, [1]], # cat backbone P4 + [-1, 3, C3, [512, False]], # 13 + + [-1, 1, Conv, [256, 1, 1]], + [-1, 1, nn.Upsample, [None, 2, "nearest"]], + [[-1, 4], 1, Concat, [1]], # cat backbone P3 + [-1, 3, C3, [256, False]], # 17 (P3/8-small) + + [-1, 1, Conv, [256, 3, 2]], + [[-1, 14], 1, Concat, [1]], # cat head P4 + [-1, 3, C3, [512, False]], # 20 (P4/16-medium) + + [-1, 1, Conv, [512, 3, 2]], + [[-1, 10], 1, Concat, [1]], # cat head P5 + [-1, 3, C3, [1024, False]], # 23 (P5/32-large) + + [[17, 20, 23], 1, Detect, [nc, anchors]], # Detect(P3, P4, P5) + ] diff --git a/utils/augmentations.py b/utils/augmentations.py index 4a6e441d7c45..bdbe07712716 100644 --- a/utils/augmentations.py +++ b/utils/augmentations.py @@ -156,7 +156,6 @@ def random_perspective( ): # torchvision.transforms.RandomAffine(degrees=(-10, 10), translate=(0.1, 0.1), scale=(0.9, 1.1), shear=(-10, 10)) # targets = [cls, xyxy] - """Applies random perspective transformation to an image, modifying the image and corresponding labels.""" height = im.shape[0] + border[0] * 2 # shape(h,w,c) width = im.shape[1] + border[1] * 2 diff --git a/utils/callbacks.py b/utils/callbacks.py index 0a0bcbdb2b96..21c587bd74c6 100644 --- a/utils/callbacks.py +++ b/utils/callbacks.py @@ -64,7 +64,6 @@ def run(self, hook, *args, thread=False, **kwargs): thread: (boolean) Run callbacks in daemon thread kwargs: Keyword Arguments to receive from YOLOv5 """ - assert hook in self._callbacks, f"hook '{hook}' not found in callbacks {self._callbacks}" for logger in self._callbacks[hook]: if thread: diff --git a/utils/dataloaders.py b/utils/dataloaders.py index 21308f0cedbd..bdeffec465e7 100644 --- a/utils/dataloaders.py +++ b/utils/dataloaders.py @@ -1104,7 +1104,8 @@ def extract_boxes(path=DATASETS_DIR / "coco128"): def autosplit(path=DATASETS_DIR / "coco128/images", weights=(0.9, 0.1, 0.0), annotated_only=False): """Autosplit a dataset into train/val/test splits and save path/autosplit_*.txt files Usage: from utils.dataloaders import *; autosplit() - Arguments + + Arguments: path: Path to images directory weights: Train, val, test weights (list, tuple) annotated_only: Only use images with an annotated txt file @@ -1183,7 +1184,7 @@ class HUBDatasetStats: """ Class for generating HUB dataset JSON and `-hub` dataset directory. - Arguments + Arguments: path: Path to data.yaml or data.zip (with data.yaml inside data.zip) autodownload: Attempt to download dataset if not found locally @@ -1314,7 +1315,7 @@ class ClassificationDataset(torchvision.datasets.ImageFolder): """ YOLOv5 Classification Dataset. - Arguments + Arguments: root: Dataset path transform: torchvision transforms, used by default album_transform: Albumentations transforms, used if installed diff --git a/utils/general.py b/utils/general.py index e311504b3031..57db68a7ac76 100644 --- a/utils/general.py +++ b/utils/general.py @@ -518,7 +518,6 @@ def check_font(font=FONT, progress=False): def check_dataset(data, autodownload=True): """Validates and/or auto-downloads a dataset, returning its configuration as a dictionary.""" - # Download (optional) extract_dir = "" if isinstance(data, (str, Path)) and (is_zipfile(data) or is_tarfile(data)): @@ -1023,7 +1022,6 @@ def non_max_suppression( Returns: list of detections, on (n,6) tensor per image [xyxy, conf, cls] """ - # Checks assert 0 <= conf_thres <= 1, f"Invalid Confidence threshold {conf_thres}, valid values are between 0.0 and 1.0" assert 0 <= iou_thres <= 1, f"Invalid IoU {iou_thres}, valid values are between 0.0 and 1.0" diff --git a/utils/loggers/__init__.py b/utils/loggers/__init__.py index 2bd8583d2ade..7051e8da0a29 100644 --- a/utils/loggers/__init__.py +++ b/utils/loggers/__init__.py @@ -350,7 +350,8 @@ class GenericLogger: """ YOLOv5 General purpose logger for non-task specific logging Usage: from utils.loggers import GenericLogger; logger = GenericLogger(...) - Arguments + + Arguments: opt: Run arguments console_logger: Console logger include: loggers to include diff --git a/utils/loggers/clearml/clearml_utils.py b/utils/loggers/clearml/clearml_utils.py index 2b5351ef8533..de4129e08a16 100644 --- a/utils/loggers/clearml/clearml_utils.py +++ b/utils/loggers/clearml/clearml_utils.py @@ -80,7 +80,7 @@ def __init__(self, opt, hyp): - Initialize ClearML Task, this object will capture the experiment - Upload dataset version to ClearML Data if opt.upload_dataset is True - arguments: + Arguments: opt (namespace) -- Commandline arguments for this run hyp (dict) -- Hyperparameters for this run @@ -133,7 +133,7 @@ def log_scalars(self, metrics, epoch): """ Log scalars/metrics to ClearML. - arguments: + Arguments: metrics (dict) Metrics in dict format: {"metrics/mAP": 0.8, ...} epoch (int) iteration number for the current set of metrics """ @@ -145,7 +145,7 @@ def log_model(self, model_path, model_name, epoch=0): """ Log model weights to ClearML. - arguments: + Arguments: model_path (PosixPath or str) Path to the model weights model_name (str) Name of the model visible in ClearML epoch (int) Iteration / epoch of the model weights @@ -158,7 +158,7 @@ def log_summary(self, metrics): """ Log final metrics to a summary table. - arguments: + Arguments: metrics (dict) Metrics in dict format: {"metrics/mAP": 0.8, ...} """ for k, v in metrics.items(): @@ -168,7 +168,7 @@ def log_plot(self, title, plot_path): """ Log image as plot in the plot section of ClearML. - arguments: + Arguments: title (str) Title of the plot plot_path (PosixPath or str) Path to the saved image file """ @@ -183,7 +183,7 @@ def log_debug_samples(self, files, title="Debug Samples"): """ Log files (images) as debug samples in the ClearML task. - arguments: + Arguments: files (List(PosixPath)) a list of file paths in PosixPath format title (str) A title that groups together images with the same values """ @@ -199,7 +199,7 @@ def log_image_with_boxes(self, image_path, boxes, class_names, image, conf_thres """ Draw the bounding boxes on a single image and report the result as a ClearML debug sample. - arguments: + Arguments: image_path (PosixPath) the path the original image file boxes (list): list of scaled predictions in the format - [xmin, ymin, xmax, ymax, confidence, class] class_names (dict): dict containing mapping of class int to class name diff --git a/utils/loggers/wandb/wandb_utils.py b/utils/loggers/wandb/wandb_utils.py index 930f2c7543af..6a32c8cc7b03 100644 --- a/utils/loggers/wandb/wandb_utils.py +++ b/utils/loggers/wandb/wandb_utils.py @@ -49,7 +49,7 @@ def __init__(self, opt, run_id=None, job_type="Training"): - Upload dataset if opt.upload_dataset is True - Setup training processes if job_type is 'Training' - arguments: + Arguments: opt (namespace) -- Commandline arguments for this run run_id (str) -- Run ID of W&B run to be resumed job_type (str) -- To set the job_type for this run @@ -90,7 +90,7 @@ def setup_training(self, opt): - Update data_dict, to contain info of previous run if resumed and the paths of dataset artifact if downloaded - Setup log_dict, initialize bbox_interval - arguments: + Arguments: opt (namespace) -- commandline arguments for this run """ @@ -120,7 +120,7 @@ def log_model(self, path, opt, epoch, fitness_score, best_model=False): """ Log the model checkpoint as W&B artifact. - arguments: + Arguments: path (Path) -- Path of directory containing the checkpoints opt (namespace) -- Command line arguments for this run epoch (int) -- Current epoch number @@ -159,7 +159,7 @@ def log(self, log_dict): """ Save the metrics to the logging dictionary. - arguments: + Arguments: log_dict (Dict) -- metrics/media to be logged in current step """ if self.wandb_run: @@ -170,7 +170,7 @@ def end_epoch(self): """ Commit the log_dict, model artifacts and Tables to W&B and flush the log_dict. - arguments: + Arguments: best_result (boolean): Boolean representing if the result of this evaluation is best or not """ if self.wandb_run: @@ -197,7 +197,7 @@ def finish_run(self): @contextmanager def all_logging_disabled(highest_level=logging.CRITICAL): - """source - https://gist.github.com/simon-weber/7853144 + """Source - https://gist.github.com/simon-weber/7853144 A context manager that will prevent any logging messages triggered during the body from being processed. :param highest_level: the maximum logging level in use. This would only need to be changed if a custom level greater than CRITICAL is defined. diff --git a/utils/metrics.py b/utils/metrics.py index 385fdc471748..9acc38591f96 100644 --- a/utils/metrics.py +++ b/utils/metrics.py @@ -41,7 +41,6 @@ def ap_per_class(tp, conf, pred_cls, target_cls, plot=False, save_dir=".", names # Returns The average precision as computed in py-faster-rcnn. """ - # Sort by objectness i = np.argsort(-conf) tp, conf, pred_cls = tp[i], conf[i], pred_cls[i] @@ -103,7 +102,6 @@ def compute_ap(recall, precision): # Returns Average precision, precision curve, recall curve """ - # Append sentinel values to beginning and end mrec = np.concatenate(([0.0], recall, [1.0])) mpre = np.concatenate(([1.0], precision, [0.0])) @@ -137,6 +135,7 @@ def process_batch(self, detections, labels): Return intersection-over-union (Jaccard index) of boxes. Both sets of boxes are expected to be in (x1, y1, x2, y2) format. + Arguments: detections (Array[N, 6]), x1, y1, x2, y2, conf, class labels (Array[M, 5]), class, x1, y1, x2, y2 @@ -233,7 +232,6 @@ def bbox_iou(box1, box2, xywh=True, GIoU=False, DIoU=False, CIoU=False, eps=1e-7 Input shapes are box1(1,4) to box2(n,4). """ - # Get the coordinates of bounding boxes if xywh: # transform from xywh to xyxy (x1, y1, w1, h1), (x2, y2, w2, h2) = box1.chunk(4, -1), box2.chunk(4, -1) @@ -279,14 +277,15 @@ def box_iou(box1, box2, eps=1e-7): Return intersection-over-union (Jaccard index) of boxes. Both sets of boxes are expected to be in (x1, y1, x2, y2) format. + Arguments: box1 (Tensor[N, 4]) box2 (Tensor[M, 4]) + Returns: iou (Tensor[N, M]): the NxM matrix containing the pairwise IoU values for every element in boxes1 and boxes2 """ - # inter(N,M) = (rb(N,M,2) - lt(N,M,2)).clamp(0).prod(2) (a1, a2), (b1, b2) = box1.unsqueeze(1).chunk(2, 2), box2.unsqueeze(0).chunk(2, 2) inter = (torch.min(a2, b2) - torch.max(a1, b1)).clamp(0).prod(2) @@ -304,7 +303,6 @@ def bbox_ioa(box1, box2, eps=1e-7): box2: np.array of shape(nx4) returns: np.array of shape(n) """ - # Get the coordinates of bounding boxes b1_x1, b1_y1, b1_x2, b1_y2 = box1 b2_x1, b2_y1, b2_x2, b2_y2 = box2.T diff --git a/utils/segment/augmentations.py b/utils/segment/augmentations.py index d7dd8aec6691..2e1dca1198b0 100644 --- a/utils/segment/augmentations.py +++ b/utils/segment/augmentations.py @@ -29,7 +29,6 @@ def random_perspective( ): # torchvision.transforms.RandomAffine(degrees=(-10, 10), translate=(.1, .1), scale=(.9, 1.1), shear=(-10, 10)) # targets = [cls, xyxy] - """Applies random perspective, rotation, scale, shear, and translation augmentations to an image and targets.""" height = im.shape[0] + border[0] * 2 # shape(h,w,c) width = im.shape[1] + border[1] * 2 diff --git a/utils/segment/general.py b/utils/segment/general.py index 2f65d60238dd..0793470a95e4 100644 --- a/utils/segment/general.py +++ b/utils/segment/general.py @@ -14,7 +14,6 @@ def crop_mask(masks, boxes): - masks should be a size [n, h, w] tensor of masks - boxes should be a size [n, 4] tensor of bbox coords in relative point form """ - n, h, w = masks.shape x1, y1, x2, y2 = torch.chunk(boxes[:, :, None], 4, 1) # x1 shape(1,1,n) r = torch.arange(w, device=masks.device, dtype=x1.dtype)[None, None, :] # rows shape(1,w,1) @@ -33,7 +32,6 @@ def process_mask_upsample(protos, masks_in, bboxes, shape): return: h, w, n """ - c, mh, mw = protos.shape # CHW masks = (masks_in @ protos.float().view(c, -1)).sigmoid().view(-1, mh, mw) masks = F.interpolate(masks[None], shape, mode="bilinear", align_corners=False)[0] # CHW @@ -51,7 +49,6 @@ def process_mask(protos, masks_in, bboxes, shape, upsample=False): return: h, w, n """ - c, mh, mw = protos.shape # CHW ih, iw = shape masks = (masks_in @ protos.float().view(c, -1)).sigmoid().view(-1, mh, mw) # CHW diff --git a/utils/triton.py b/utils/triton.py index 3d529ec88a07..2fee42815517 100644 --- a/utils/triton.py +++ b/utils/triton.py @@ -17,10 +17,9 @@ class TritonRemoteModel: def __init__(self, url: str): """ - Keyword arguments: + Keyword Arguments: url: Fully qualified address of the Triton server - for e.g. grpc://localhost:8000 """ - parsed_url = urlparse(url) if parsed_url.scheme == "grpc": from tritonclient.grpc import InferenceServerClient, InferInput