-
Notifications
You must be signed in to change notification settings - Fork 3
/
Copy pathget_atm_interf_rtr.m
143 lines (129 loc) · 5.4 KB
/
get_atm_interf_rtr.m
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
function [dt, da, dg, Ht, Ha, Hg, N, de, der, rtr] = get_atm_interf_rtr (e, H, pos, date, rtr, opt)
% GET_ATM_INTERF_RTR: Closed-form interferometric atmospheric delay, using ray-tracer results.
%
% SYNTAX:
% [dt, da, dg, Ht, Ha, Hg, N, de, der, rtr] = get_atm_interf_rtr (e, H, rtr, opt);
%
% INPUT:
% e: [vector] satellite elevation angle (in degrees)
% H: [vector] reflector depth or antenna height above reflector (in meters)
%
% OUTPUT:
% dt: [vector] total delay (in meters)
% da: [vector] along-path delay (in meters)
% dg: [vector] geometric delay (in meters)
% Ht: [vector] total atmospheric altimetry correction (in meters)
% Ha: [vector] along-path atmospheric altimetry correction (in meters)
% Hg: [vector] geometric atmospheric altimetry correction (in meters)
% N: [vector] layer average refractivity (N=n-1, unitless)
% de: [vector] satellite elevation angle bending (in degrees)
% der: [vector] rate of change of elevation bending w.r.t. elevation angle (in degrees per degree)
% rtr: [struct] raytracer data (see raytrace_interf_series.m)
%
% OPTIONAL INPUT:
% pos: [vector] position, in geodetic coordinates (latitude, longitude, altitude; in degrees, degrees, meters)
% date: [vector] date (year month day, in this order)
% rtr: [struct] raytracer data (see raytrace_interf_series.m)
% rtr.target: [structure] raytracer input target; as output by set_target_interf.m
% rtr.atm: [structure] raytracer input atmospheric model; as output by setup_atm_which.m
% rtr.opt: [structure] raytracer input options/settings; as output by set_opt.m
% rtr.result: [struct] raytracer output propagation quantities (see raytrace_interf_series.m)
% rtr.extra: [struct] raytracer output extra results (see raytrace_interf_series.m)
% opt: [struct] closed formula options
% opt.n_zenith_only: [scalar, boolean] index of refraction (n) -- use zenithal values only? defaults to false
% opt.n_field_name: index of refraction (n) -- field name for average value [char] defaults to 'logavg' (see raytrace_interf_more.m)
% opt.rtr: [structure] supplementary raytracer input options/settings, takes precedence over rtr.opt.
% opt.* (see get_atm_interf_met.m for other options)
%
% EXAMPLE:
% e = 45; % degrees
% H = 10; % meters
% [dt, ~, ~, Ht] = get_atm_interf_rtr (e, H)
if (nargin < 3), pos = []; end
if (nargin < 4), date = []; end
if (nargin < 5), rtr = []; end
if (nargin < 6), opt = []; end
if isempty(pos), pos = [0 0 0]; end
if isempty(date), date = [2000 0 0]; end
if isempty(rtr), rtr = struct(); end
opt = structmergenonempty(get_opt_default(), opt);
[N, de, der] = get_atm_rtr (e, H, pos, date, rtr, opt);
if (nargout < 4)
[dt, da, dg] = get_atm_interf_gen (e, H, N, de, der);
else
[dt, da, dg, Ht, Ha, Hg] = get_atm_interf_gen (e, H, N, de, der);
end
end
%%
function opt = get_opt_default ()
opt = struct();
opt.numerical_noend = true;
opt.n_zenith_only = false;
opt.n_field_name = 'logavg';
opt.height_sat_factor = 1;
opt.atm_planar = false;
opt.rtr = struct();
opt.rtr.tol = 1e-6;
%opt.rtr.quad_routine = 'adaptive';
opt.rtr.interf_convergence_check_simplified = false;
%opt.rtr.interf_approach = 'rigorous';
opt.rtr.interf_approach = 'rectilinear-mixed';
opt.rtr.interf_elev_input = 'geometric';
opt.rtr.interf_series_mesh_elev_rh = false;
opt.rtr.interf_series_use_input_elev_geom_for_height = false;
opt.rtr.interf_refraction_index = true;
end
%%
function [N, de, der] = get_atm_rtr (e, H, pos, date, rtr, opt)
rtr = get_atm_rtr_aux (e, H, pos, date, rtr, opt);
get_field2 = @(f, f2) arrayfun(@(x) x.(f).(f2), rtr.extra);
% refractivity:
n = get_field2('n', opt.n_field_name);
N = n-1; clear n
if opt.n_zenith_only
idx = (e == 90);
assert(sum(idx)==1)
N = N(idx);
end
% bending angle:
eg = get_field2('elev','geom');
ea = get_field2('elev','appar');
de = ea - eg;
%myassert(e, eg) % WRONG! it's only max(abs(e-eg))<rtr.opt.tol/dd_de;
% bending angle rate w.r.t. elevation angle:
if opt.rtr.interf_series_use_input_elev_geom_for_height
e2 = e;
else
% (see raytrace_interf_series.m for details)
e2 = eg;
end
der = gradient_all(de, e2, [], opt.numerical_noend);
end
%%
function rtr = get_atm_rtr_aux (e, H, pos, date, rtr, opt2)
if ~isfieldempty(rtr, 'result') ...
&& ~isfieldempty(rtr, 'extra')
return;
end
if isfieldempty(rtr, 'opt')
rtr.opt = set_opt();
end
rtr.opt = structmergenonempty(rtr.opt, opt2.rtr);
if opt2.height_sat_factor~=1
rtr.opt.height_sat = rtr.opt.height_sat*opt2.height_sat_factor; % EXPERIMENTAL
%rtr.opt.nominal_radius_earth = 1000*rtr.opt.nominal_radius_earth; % EXPERIMENTAL
end
if isfieldempty(rtr, 'target')
rtr.target = set_target (pos, [], [], mydatenum(date));
end
if isfieldempty(rtr, 'atm')
rtr.atm = setup_atm_3d_cira (rtr.target, [], rtr.opt);
if opt2.atm_planar
rtr.atm = setup_atm_tanplane (rtr.target, rtr.atm, rtr.opt); % EXPERIMENTAL
else
rtr.atm = setup_atm_sphosc (rtr.target, rtr.atm, rtr.opt);
end
end
[rtr.result, ~, ~, ~, rtr.extra] = raytrace_interf_series (...
rtr.target, rtr.atm, rtr.opt, e, H);
end