-
Notifications
You must be signed in to change notification settings - Fork 103
New issue
Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.
By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.
Already on GitHub? Sign in to your account
Interested in your paper #832
Comments
+1. I'm also working on the reproduction of the multimodal model with a parallel attention strategy, while there are some difficulties to make it done. I hope to hear from the authors.
Here is my INI file: ;; Multimodal Transformer with a parallel attention
[main]
name="transformer"
tf_manager=<tf_manager>
output="examples/output/parallel"
overwrite_output_dir=True
batch_size=32
epochs=1000
train_dataset=<train_data>
val_dataset=<val_data>
trainer=<trainer>
runners=[<runner>]
evaluation=[("target", evaluators.BLEU), ("target_greedy", "target", evaluators.BLEU)]
logging_period=100
validation_period=1000
random_seed=1234
[tf_manager]
class=tf_manager.TensorFlowManager
num_sessions=1
num_threads=4
[image_reader]
class=readers.image_reader.imagenet_reader
prefix="/flickr30k-images"
target_width=224
target_height=224
zero_one_normalization=True
[train_data]
class=dataset.load
series=["source", "target", "images", "source_bpe", "target_bpe"]
data=["examples/data/translation/train.en", "examples/data/translation/train.de", ("examples/data/translation/train_images.txt", <image_reader>), (<wp_preprocess>, "source"), (<wp_preprocess>, "target")]
[val_data]
class=dataset.load
series=["source", "target", "images", "source_bpe", "target_bpe"]
data=["examples/data/translation/val.en", "examples/data/translation/val.de", ("examples/data/translation/val_images.txt", <image_reader>), (<wp_preprocess>, "source"), (<wp_preprocess>, "target")]
[wp_preprocess]
class=processors.wordpiece.WordpiecePreprocessor
vocabulary=<vocabulary>
[vocabulary]
class=vocabulary.from_wordlist
path="examples/data/translation/wordpieces.clean"
contains_header=False
contains_frequencies=False
[inpseq]
class=model.sequence.EmbeddedSequence
name="input"
embedding_size=256
max_length=50
data_id="source_bpe"
vocabulary=<vocabulary>
[encoder]
class=encoders.transformer.TransformerEncoder
name="text_encoder"
input_sequence=<inpseq>
ff_hidden_size=2048
depth=6
n_heads=8
dropout_keep_prob=0.7
[imagenet]
class=encoders.imagenet_encoder.ImageNet
name="imagenet_resnet"
data_id="images"
network_type="resnet_v2_50"
spatial_layer="resnet_v2_50/block4/unit_3/bottleneck_v2/conv3"
slim_models_path="lib/models/research/slim"
[decoder]
class=decoders.transformer.TransformerDecoder
name="decoder"
encoders=[<encoder>,<imagenet>]
dropout_keep_prob=0.5
data_id="target_bpe"
max_output_len=50
vocabulary=<vocabulary>
embedding_size=256
ff_hidden_size=2048
depth=6
n_heads_self=8
n_heads_enc=8
attention_combination_strategy="parallel"
[trainer]
class=trainers.delayed_update_trainer.DelayedUpdateTrainer
batches_per_update=5
l2_weight=1.0e-8
clip_norm=1.0
objectives=[<obj>]
optimizer=<lazyadam_g>
[obj]
class=trainers.cross_entropy_trainer.CostObjective
decoder=<decoder>
[lazyadam_g]
class=tf.contrib.opt.LazyAdamOptimizer
beta1=0.9
beta2=0.98
epsilon=1.0e-9
learning_rate=<decayed_lr>
[decayed_lr]
class=functions.noam_decay
learning_rate=0.2
model_dimension=6
warmup_steps=111
[runner]
class=runners.GreedyRunner
decoder=<decoder>
postprocess=processors.wordpiece.WordpiecePostprocessor
output_series="target_greedy" and the wordlist file of subtokens is like:
|
Sign up for free
to join this conversation on GitHub.
Already have an account?
Sign in to comment
I'm interested in your paper -- 'Input Combination Strategies for Multi-Source Transformer Decoder', Would you mind telling me how can I reproduce this work. I want cite this paper. Thanks
The text was updated successfully, but these errors were encountered: