diff --git a/Cats.html b/Cats.html index 4045e6f3..17a75642 100644 --- a/Cats.html +++ b/Cats.html @@ -166,7 +166,7 @@
As with Job
, note that nothing has been run yet. The effect has been properly suspended. To
run our program, we must first supply the SparkSession
to the ReaderT
layer and then
@@ -193,7 +193,7 @@
And an instance of a TypedDataset
:
We can be less verbose using the Injection.apply
function:
import frameless._
@@ -180,7 +180,7 @@ cal.setTime(new java.util.Date(l))
cal
})
-// calendarToLongInjection: Injection[Calendar, Long] = frameless.Injection$$anon$1@4316a918
+Now we can create our TypedDataset
:
val personDS = TypedDataset.create(people)
// personDS: TypedDataset[Person] = [age: int, birthday: bigint]
@@ -212,7 +212,7 @@ And now we can create our TypedDataset
:
val personDS = TypedDataset.create(people)
// personDS: TypedDataset[Person] = [age: int, gender: int]
diff --git a/Job.html b/Job.html
index 6dff43a6..87b79baa 100644
--- a/Job.html
+++ b/Job.html
@@ -156,7 +156,7 @@ Now we can execute this new job by specifying a group-id and a description. This allows the programmer to see this information on the Spark UI and help track, say, performance issues.
diff --git a/TypedDatasetVsSparkDataset.html b/TypedDatasetVsSparkDataset.html index 8c4ece0b..a47e2253 100644 --- a/TypedDatasetVsSparkDataset.html +++ b/TypedDatasetVsSparkDataset.html @@ -160,8 +160,8 @@The value ds
holds the content of the initialDs
read from a parquet file.
diff --git a/TypedEncoder.html b/TypedEncoder.html
index 57dd3ee8..8e7ec99e 100644
--- a/TypedEncoder.html
+++ b/TypedEncoder.html
@@ -206,7 +206,7 @@
But any non-encodable in the case class hierarchy will be detected at compile time:
case class BarDate(d: Double, s: String, t: java.util.Calendar)
case class FooDate(i: Int, b: BarDate)
diff --git a/TypedML.html b/TypedML.html
index d618667f..8ea3421a 100644
--- a/TypedML.html
+++ b/TypedML.html
@@ -176,7 +176,7 @@ case class RFInputs(price: Double, features: Vector)
val rf = TypedRandomForestRegressor[RFInputs]
-// rf: TypedRandomForestRegressor[RFInputs] = frameless.ml.regression.TypedRandomForestRegressor@25bb6f25
+// rf: TypedRandomForestRegressor[RFInputs] = frameless.ml.regression.TypedRandomForestRegressor@710d68fa
val model = rf.fit(trainingDataWithFeatures).run()
-// model: AppendTransformer[RFInputs, TypedRandomForestRegressor.Outputs, org.apache.spark.ml.regression.RandomForestRegressionModel] = frameless.ml.TypedEstimator$$anon$1@5a85c7ef
+TypedRandomForestRegressor[RFInputs]
compiles only if RFInputs
contains only one field of type Double (the label) and one field of type Vector (the features):
case class WrongRFInputs(labelOfWrongType: String, features: Vector)
@@ -269,7 +269,7 @@ case class RFInputs(cityIndexed: Double, features: Vector)
val rf = TypedRandomForestClassifier[RFInputs]
-// rf: TypedRandomForestClassifier[RFInputs] = frameless.ml.classification.TypedRandomForestClassifier@238a4f15
+// rf: TypedRandomForestClassifier[RFInputs] = frameless.ml.classification.TypedRandomForestClassifier@155d814
val model = rf.fit(indexedData).run()
-// model: AppendTransformer[RFInputs, TypedRandomForestClassifier.Outputs, org.apache.spark.ml.classification.RandomForestClassificationModel] = frameless.ml.TypedEstimator$$anon$1@6d0774a3
+We now want to predict city
for testData
using the previously trained model. Like the Spark ML API,
@@ -330,7 +330,7 @@