Skip to content
New issue

Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.

By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.

Already on GitHub? Sign in to your account

RuntimeError: simple_bind error. Arguments: #316

Open
TimLiujn opened this issue Feb 21, 2020 · 2 comments
Open

RuntimeError: simple_bind error. Arguments: #316

TimLiujn opened this issue Feb 21, 2020 · 2 comments

Comments

@TimLiujn
Copy link

when i train my own dataset in single gpu,the following is the wrong report.:
Traceback (most recent call last):
File "/home/ljn/ljn_work/simpledet/detection_train.py", line 313, in
train_net(parse_args())
File "/home/ljn/ljn_work/simpledet/detection_train.py", line 295, in train_net
profile=profile
File "/home/ljn/ljn_work/simpledet/core/detection_module.py", line 969, in fit
for_training=True, force_rebind=force_rebind)
File "/home/ljn/ljn_work/simpledet/core/detection_module.py", line 450, in bind
state_names=self._state_names)
File "/usr/local/lib/python3.6/site-packages/mxnet-1.6.0-py3.6.egg/mxnet/module/executor_group.py", line 280, in init
self.bind_exec(data_shapes, label_shapes, shared_group)
File "/usr/local/lib/python3.6/site-packages/mxnet-1.6.0-py3.6.egg/mxnet/module/executor_group.py", line 376, in bind_exec
shared_group))
File "/usr/local/lib/python3.6/site-packages/mxnet-1.6.0-py3.6.egg/mxnet/module/executor_group.py", line 670, in _bind_ith_exec
shared_buffer=shared_data_arrays, **input_shapes)
File "/usr/local/lib/python3.6/site-packages/mxnet-1.6.0-py3.6.egg/mxnet/symbol/symbol.py", line 1782, in simple_bind
raise RuntimeError(error_msg)
RuntimeError: simple_bind error. Arguments:
data: (1, 3, 800, 1200)
im_info: (1, 3)
gt_bbox: (1, 100, 5)
valid_ranges: (1, 3, 2)
rpn_cls_label: (1, 3, 56250)
rpn_reg_target: (1, 3, 60, 50, 75)
rpn_reg_weight: (1, 3, 60, 50, 75)
Traceback (most recent call last):
File "src/operator/contrib/./../tensor/.././operator_common.h", line 404
MXNetError: Check failed: p->num_inputs() == p->inputs.size() (1 vs. 4) : Number of inputs to operator _backward_ROIAlign_v2 (1) does not match the actual number of inputs provided to operator roi_align_backward (4).

@huangzehao
Copy link
Contributor

Can you train COCO sucessfully?

@TimLiujn
Copy link
Author

Can you train COCO sucessfully?

Yes,this error is due to the mxnet version problem

Sign up for free to join this conversation on GitHub. Already have an account? Sign in to comment
Labels
None yet
Projects
None yet
Development

No branches or pull requests

2 participants