-
Notifications
You must be signed in to change notification settings - Fork 13
/
main.py
189 lines (161 loc) · 7.01 KB
/
main.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
# type: ignore
import argparse
import logging
import os
import shutil
import sys
import numpy as np
import yaml
from tqdm import tqdm
from src import data_loader, solver, utils, visualizer
def parse_args():
parser = argparse.ArgumentParser()
parser.add_argument(
"--config_file",
default="./configs/mvsec_indoor_no_timeaware.yaml",
help="Config file yaml path",
type=str,
)
parser.add_argument(
"--eval",
help="Add for evaluation run",
action="store_true",
)
parser.add_argument(
"--log", help="Log level: [debug, info, warning, error, critical]", type=str, default="info"
)
args = parser.parse_args()
with open(args.config_file, "r") as f:
config = yaml.safe_load(f)
return config, args
def save_config(save_dir: str, file_name: str, log_level=logging.INFO):
"""Save configuration"""
if not os.path.exists(save_dir):
os.makedirs(save_dir)
shutil.copy(file_name, save_dir)
logging.basicConfig(
handlers=[
logging.FileHandler(f"{save_dir}/main.log", mode="w"),
logging.StreamHandler(sys.stdout),
],
level=log_level,
format="%(asctime)s - %(name)s - %(levelname)s - %(message)s",
)
def evaluate_mvsec_dataset_with_gt(eval_frame_time_stamp_list, data_config, loader, solv):
logger.info("Evaluation pipeline")
eval_dt = data_config["eval_dt"]
assert eval_dt == 1 or eval_dt == 4
logger.info(f"dt (for MVSEC) is {eval_dt}")
n_events = data_config["n_events_per_batch"]
for i1 in tqdm(range(len(eval_frame_time_stamp_list) - eval_dt)):
logger.info(f"Frame {i1} of {len(eval_frame_time_stamp_list)}")
try:
if i1 < data_config["ind1"] or i1 > data_config["ind2"]:
continue # cutofff
except KeyError:
pass
t1 = eval_frame_time_stamp_list[i1]
t2 = eval_frame_time_stamp_list[i1 + eval_dt]
ind1 = loader.time_to_index(t1) # event index
ind2 = loader.time_to_index(t2)
# Flow error metrics calculation is based on GT flow + events between the consective GT flow frames
batch_for_gt_slice = loader.load_event(ind1, ind2)
gt_flow = loader.load_optical_flow(t1, t2)
flow_time = t2 - t1
batch_for_gt_slice[..., 2] -= np.min(batch_for_gt_slice[..., 2])
# Optimization is based on fixed number of events
if ind2 - ind1 < n_events:
logger.info(
f"Less events in one GT flow sequence. Events: {ind2-ind1} / Expected: {n_events}"
)
insufficient = n_events - (ind2 - ind1)
ind1 -= insufficient // 2
ind2 += insufficient // 2
elif ind2 - ind1 > n_events:
logger.info(
f"Too many events in one GT flow sequence. Events: {ind2-ind1} / Expected: {n_events}"
)
ind1 = ind2 - n_events
batch_for_optimization = loader.load_event(max(ind1, 0), min(ind2, len(loader)))
batch_for_optimization[..., 2] -= np.min(batch_for_optimization[..., 2])
if utils.check_key_and_bool(data_config, "remove_car"):
logger.info("Remove car-boody pixels")
batch_for_optimization = utils.crop_event(batch_for_optimization, 0, 193, 0, 346)
best_motion = solv.optimize(batch_for_optimization)
solv.set_previous_frame_best_estimation(best_motion)
# mask with event
flow_error_with_mask = solv.calculate_flow_error(best_motion, gt_flow, timescale=flow_time, events=batch_for_gt_slice) # type: ignore
solv.save_flow_error_as_text(i1, flow_error_with_mask, "flow_error_per_frame_with_mask.txt") # type: ignore
# Visualization
solv.visualize_original_sequential(batch_for_gt_slice)
solv.visualize_pred_sequential(batch_for_gt_slice, best_motion)
solv.visualize_gt_sequential(batch_for_gt_slice, gt_flow)
if __name__ == "__main__":
config, args = parse_args()
data_config: dict = config["data"]
out_config: dict = config["output"]
log_level = getattr(logging, args.log.upper(), None)
if not isinstance(log_level, int):
raise ValueError("Invalid log level: %s" % log_level)
save_config(out_config["output_dir"], args.config_file, log_level)
logger = logging.getLogger(__name__)
if utils.check_key_and_bool(config, "fix_random_seed"):
utils.fix_random_seed()
# Visualizer
image_shape = (data_config["height"], data_config["width"])
if config["is_dnn"] and "crop" in data_config["preprocess"].keys():
image_shape = (data_config["preprocess"]["crop"]["height"], data_config["preprocess"]["crop"]["width"]) # type: ignore
viz = visualizer.Visualizer(
image_shape,
show=out_config["show_interactive_result"],
save=True,
save_dir=out_config["output_dir"],
)
# Loader
loader = data_loader.collections[data_config["dataset"]](config=data_config)
loader.set_sequence(data_config["sequence"])
# Solver
method_name = config["solver"]["method"]
solv: solver.SolverBase = solver.collections[method_name](
image_shape,
calibration_parameter=loader.load_calib(),
solver_config=config["solver"],
optimizer_config=config["optimizer"],
output_config=config["output"],
visualize_module=viz,
)
if args.eval: # Run evaluation piipeline.
if config["is_dnn"]:
e = "DNN code is not published."
logger.error(e)
raise NotImplementedError(e)
else:
logger.info("Sequential optimization")
assert loader.gt_flow_available # evaluate with GT flow
logger.info("evaluation with GT")
eval_frame_time_stamp_list = loader.eval_frame_time_list()
evaluate_mvsec_dataset_with_gt(eval_frame_time_stamp_list, data_config, loader, solv)
logger.info(f"Evaluation done! {data_config['sequence']}")
exit()
# Not evaluation - single frame optimization
if config["is_dnn"]:
e = "DNN code is not published."
logger.error(e)
raise NotImplementedError(e)
else: # For non-DNN method
logger.info("Single-frame optimization")
ind1, ind2 = data_config["ind1"], data_config["ind2"]
batch: np.ndarray = loader.load_event(ind1, ind2)
batch[..., 2] -= np.min(batch[..., 2])
if utils.check_key_and_bool(data_config, "remove_car"):
batch = utils.crop_event(batch, 0, 193, 0, 346) # remvoe MVSEC car
solv.visualize_one_batch_warp(batch)
best_motion: np.ndarray = solv.optimize(batch)
solv.visualize_one_batch_warp(batch, best_motion)
# Calculate Flow error when GT is available
if loader.gt_flow_available:
t1 = loader.index_to_time(ind1)
t2 = loader.index_to_time(ind2)
gt_flow = loader.load_optical_flow(t1, t2)
solv.visualize_one_batch_warp_gt(batch, gt_flow)
solv.calculate_flow_error(best_motion, gt_flow, t2 - t1, batch)