-
Notifications
You must be signed in to change notification settings - Fork 2
/
Copy pathviz.py
80 lines (68 loc) · 2.42 KB
/
viz.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
from fastapi import APIRouter, HTTPException
import pandas as pd
import plotly.express as px
import joblib
from .predict import FILENAME, csv_url
router = APIRouter()
# Import the prediction model
knn = joblib.load(FILENAME)
new_df = pd.read_csv(csv_url)
# track_id = new_df['id'][0]
# Comes from the colab file containing the prediction model
def predict_model(track_id):
obs = new_df.index[new_df['id'] == track_id]
series = new_df.iloc[obs, 5:].to_numpy()
neighbors = knn.kneighbors(series)
new_obs = neighbors[1][0][6:57]
return list(new_df.loc[new_obs, 'id'])
def feature_average(track_id):
'''
This function returns the sum of the features for the ten recommended songs.
'''
similar_tracks = predict_model(track_id)
# Return a dataframe with only the ten most similar tracks
similar_tracks = new_df[new_df["id"].isin(similar_tracks)]
similar_tracks = similar_tracks[['acousticness', 'danceability',
'energy', 'instrumentalness',
'liveness',
'speechiness', 'valence']]
# Average features of ten tracks
acousticness = round(similar_tracks['acousticness'].mean(), 2)
danceability = round(similar_tracks['danceability'].mean(), 2)
energy = round(similar_tracks['energy'].mean(), 2)
instrumentalness = round(similar_tracks['instrumentalness'].mean(), 2)
liveness = round(similar_tracks['liveness'].mean(), 2)
#mode = round(similar_tracks['mode'].mean(), 2)
speechiness = round(similar_tracks['speechiness'].mean(), 2)
valence = round(similar_tracks['valence'].mean(), 2)
# Store all to "features" variable
features = []
attributes = [
acousticness,
danceability,
energy,
instrumentalness,
liveness,
speechiness,
valence]
# features.append(acousticness)
for attribute in attributes:
features.append(attribute)
return features
@router.get('/viz/{track_id}')
async def viz(track_id: str):
r = feature_average(track_id)
attributes = [
'acousticness',
'danceability',
'energy',
'instrumentalness',
'liveness',
'speechiness',
'valence']
# Make Plotly figure
fig = px.line_polar(r=r, theta=attributes, line_close=True)
fig.update_traces(fill='toself')
# fig.show()
# fig.to_json()
return fig.to_json()