l'alphabet a
pour sortir de 2 et aller dans 1, puis il reste dans 1 en lisant infiniement souvent 1.
On ne regarde pas les traces qui ne sont pas acceptante, que celle acceptantes.
TEST:
L(A) =
Réponse:
construire automat buchi pour: p, Xp. Lit: p
graph LR
0((0))-->|Sigma_p|e((1))
e-->|Sigma|e
style 0 stroke:green
style e stroke:red
Lit: Xp
graph LR
0((0))-->|Sigma|1((1))
1-->|Sigma_p|e((2))
e-->|sigma|e
style 0 stroke:green
style e stroke:red
Lit: Fp
graph LR
0((0))-->|Sigma|0
0-->|Sigma_p|e((1))
e-->|sigma|e
style 0 stroke:green
style e stroke:red
lit: XXp
graph LR
0((0))-->|Sigma|1((1))
1-->|Sigma|3((3))
3-->|Sigma_p|e((2))
e-->|sigma|e
style 0 stroke:green
style e stroke:red
Lit: Gp
graph LR
0((0))-->|Sigma_p|0
style 0 stroke:green
style 0 stroke:red
Lit: FGp
graph LR
0((0))-->|Sigma|0
0-->|Sigma_p|e((2))
e-->|Sigma_p|e
style 0 stroke:green
style e stroke:red
Lit: GFp
graph LR
0((0))-->|Sigma|0
0-->|Sigma_p|e((2))
e-->|Sigma_p|e
e-->|Sigma|0
style 0 stroke:green
style e stroke:red
Lit: pUq
graph LR
0((0))-->|Sigma_p|0
0-->|Sigma_q|e((1))
e-->|sigma|e
style 0 stroke:green
style e stroke:red
Lit: pRq
graph LR
0((0))-->|Sigma_q|0
0-->|Sigma_p|e((1))
e-->|sigma|e
style 0 stroke:green
style e stroke:red
G(p-->Fq) ==> NNF
lit aU(Xa)
graph LR
0-->|a|0((0))
0-->|Sigma|e((1))
style 0 stroke:green
style e stroke:red
graph TB
0["a U (Xa)"]-->1["a, X(a U Xa)"]
0-->2["Xa"]
1-->1
2-->|Sigma|3[a]
graph TB
0["false R (!p || ( true U q))"]-->1["!p || true U q, X(!p || true U q)"]
2-->0
3-->4["true, X(tue U q)"]
1-->3["true U q, X(true U q)"]
3-->5["q"]
1-->2["!p, X(!p || true U q)"]
5-->0
{signal:
[{name: "P1", wave: "x...l...", data: ["P1"]},
{name: "P2", wave: "0...xxl.", date: ["P2"]}]}